题目:
算法:线性dp 时间复杂度:n2
思路分析:
状态表示:f[i][j] 表示a[i],b[j]之前的最长公共序列
状态转移方程 :集合的划分 ,划分依据就是a[i]与b[j]在不在相同的子序列中,
其中f[i][j-1]和f[i-1][j]与对应的(1,0)(0,1)其实是不等价的。f[i][j-1]代表a[i],b[j-1]之前的最长公共序列,不一定包含b[j]。f[i-1][j]同理。
其中f[i-1][j-1]是包含在(1,0)(0,1)中的,所以可以去掉。
初始化,数组初始化时都为0。
代码:
#include<iostream>
#include<cstring>
using namespace std;
const int N=1100;
char a[N],b[N];
int n,m;
int f[N][N];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++) cin>>a[i];
for(int j=1;j<=m;j++) cin>>b[j];
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(a[i]==b[j]) f[i][j]=max(f[i][j],f[i-1][j-1]+1);
else f[i][j]=max(f[i-1][j],f[i][j-1]);
}
}
cout<<f[n][m];
}