acwing算法基础 dp 897.最长公共子序列

题目:

在这里插入图片描述

算法:线性dp 时间复杂度:n2

思路分析:

状态表示:f[i][j] 表示a[i],b[j]之前的最长公共序列
状态转移方程 :集合的划分 ,划分依据就是a[i]与b[j]在不在相同的子序列中,
在这里插入图片描述
其中f[i][j-1]和f[i-1][j]与对应的(1,0)(0,1)其实是不等价的。f[i][j-1]代表a[i],b[j-1]之前的最长公共序列,不一定包含b[j]。f[i-1][j]同理。
其中f[i-1][j-1]是包含在(1,0)(0,1)中的,所以可以去掉。
初始化,数组初始化时都为0。

代码:

#include<iostream>
#include<cstring>
using namespace std;
const int N=1100;
char a[N],b[N];
int n,m;
int f[N][N];
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>a[i];
    for(int j=1;j<=m;j++) cin>>b[j];
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            if(a[i]==b[j]) f[i][j]=max(f[i][j],f[i-1][j-1]+1);
            else f[i][j]=max(f[i-1][j],f[i][j-1]);
        }
    }
    cout<<f[n][m];
}

tips:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值