- 博客(215)
- 收藏
- 关注
原创 【深度学习】数据集的划分比例到底是选择811还是712?
在机器学习中,数据集的划分对模型性能评估至关重要。常见的划分方式包括811和712,分别代表训练集、验证集和测试集的比例。811划分中,训练集占80%,验证集和测试集各占10%,适合数据量有限的情况,旨在最大化训练数据以提升模型性能。712划分中,训练集占70%,验证集占10%,测试集占20%,适合数据量较大的情况,旨在通过更大的测试集提高最终评估的可靠性。选择哪种划分方式取决于数据集规模和评估需求:数据量较小时,811划分更为合适;数据量较大时,712划分能提供更可靠的性能评估。
2025-05-12 10:20:36
422
原创 【深度学习】一文带你了解深度学习中Batch Normalization的作用!
Batch Normalization(BN)是深度学习中一种关键技术,通过规范化输入数据的分布,显著加速网络训练并提升模型稳定性。其主要作用包括:1) 加速训练收敛,缓解内部协变量偏移,允许使用更大学习率;2) 提升模型稳定性,减少对初始化的依赖,抑制过拟合;3) 改善梯度传播,缓解梯度消失或爆炸问题;4) 支持构建更深的网络结构,如ResNet和DenseNet。BN的计算步骤包括计算均值和方差、标准化处理以及缩放与偏移。在实际应用中,需注意训练与推理的差异、与Dropout的结合以及适用场景。BN已成
2025-05-11 21:56:25
904
原创 【CV必读经典】MetaFormer Is Actually What You Need for Vision | CVPR2022
MetaFormer 才是你进行视觉任务真正需要的架构
2025-03-04 13:23:39
886
1
原创 【安徽理工大学】一文带你高分拿下计算机考研复试(85+的秘密)| 第三弹
复试准备要点包括:简洁明了的个人简历(5~8份),省级以上竞赛证书(彩印),以及毕业设计的详细内容或构思。对于缺乏项目或竞赛经验的学生,建议通过完成一个中等复杂度的编程项目来提升实践能力,并熟悉项目流程和技术栈。有项目或竞赛经验的学生应深入理解参与项目的细节,以便在复试中展示。整体而言,复试准备应注重实践能力的展示和项目经验的深入理解,以给导师留下良好印象。
2025-02-27 19:18:20
256
原创 【CV前沿】YOLOv12: Attention-Centric Real-Time Object Detectors
一文带你快速了解YOLO12!
2025-02-20 17:03:09
878
原创 『YOLOV7』| 一文解决_pickle.UnpicklingError: STACK_GLOBAL requires str报错的情况
一文解决_pickle.UnpicklingError: STACK_GLOBAL requires str的情况,解决YOLO中的报错问题!
2024-11-05 21:21:19
632
原创 【YOLO】一文搞定训练集、验证集、测试集的作用与区别以及常见数据集的划分比例!
在机器学习中,尤其是深度学习领域,YOLO(You Only Look Once)算法的训练过程依赖于训练集、验证集和测试集的合理划分与使用。训练集用于模型的学习和参数调整,验证集用于模型选择和超参数优化,而测试集则用于最终评估模型的泛化能力。
2024-11-04 19:37:17
3073
3
原创 『YOLO』断点训练、解决训练中断异常情况
当yolo在训练的时候,如果训练中断或者出现异常,可通过修改代码,从上一次断掉处重新训练,实现断点续训。
2024-11-04 17:14:06
1975
1
原创 『VsCode』| 修改内置字体为JetBrains Mono NL
修改VsCode内置字体为JetBrains Mono NL,编辑器变得更加的美观
2024-10-25 16:24:18
1588
原创 深度学习 | Pytorch的GPU版本查看GPU是否可用、GPU版本、GPU数量
Pytorch的GPU版本查看GPU是否可用、GPU版本、GPU数量
2024-10-15 14:41:12
1633
原创 『VsCode』| 预设代码片段进行生成
我们在前面练习Vue的过程中,有些代码片段是需要经常写的,我们再VSCode中我们可以生成一个代码片段,方便我们快速生成。VSCode中的代码片段有固定的格式,所以我们一般会借助于一个在线工具来完成。
2024-08-12 22:34:39
466
原创 Algorithm | AcWing 148. 合并果子
并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使达达耗费的体力最少,并输出这个最小的体力耗费值。在一个果园里,达达已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。每一次合并,达达可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。因为还要花大力气把这些果子搬回家,所以达达在合并果子时要尽可能地节省体力。输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为。为最小的体力耗费值。,表示果子的种类数。
2024-08-11 22:17:01
457
原创 Django | 一文带你搞定Django项目的创建、应用的注册、服务请求、urls.py的配置、settings.py的配置、配置项的介绍、URL调度器的使用
django项目创建后,在主应用中,会有一个settings.py文件,这个就是该项目的配置文件settings文件包含Django安装的所有配置settings文件是一个包含模块级变量的python模块,所以该模块本身必须符合python规则,并且可以使用python的语法settings中的所有配置项的key必须全部大写。
2024-08-10 20:55:53
3883
原创 Django | 一文带你了解Django的简介、安装、结构、B/S、C/S、MVC、MVT、ORM
Django是Python语言中的一个web框架,Python语言中主流的web框架有Django、Tornado、Flask 等多种。Django相较与其它WEB框架,其优势为:大而全,框架本身集成了ORM、模型绑定、模板引擎、缓存、Session等功能,是一个全能型框架,拥有自己的Admin数据管理后台,第三方工具齐全,性能折中。缺点:功能太多,数据分表复杂,高性能扩展复杂。 Django 是开源的!
2024-08-10 10:42:43
1756
原创 Matplotlib | 一文搞定Matplotlib从入门到实战演练!
Matplotlib 是一个 Python 的 2D绘图库。通过 Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等。官网https://matplotlib.org/\qquad学习Matplotlib 可让数据可视化,更直观的真实给用户。使数据更加客观、更具有说服力。Matplotlib是Python的库,又是开发中常用的库。
2024-08-07 22:58:53
19530
4
原创 Algorithm | AcWing 908. 最大不相交区间数量
请你在数轴上选择若干区间,使得选中的区间之间互不相交(包括端点)。输出一个整数,表示可选取区间的最大数量。输出可选取区间的最大数量。,表示一个区间的两个端点。行,每行包含两个整数。
2024-08-07 18:16:21
816
原创 Algorithm | AcWing 905. 区间选点
请你在数轴上选择尽量少的点,使得每个区间内至少包含一个选出的点。输出一个整数,表示所需的点的最小数量。位于区间端点上的点也算作区间内。,表示一个区间的两个端点。输出选择的点的最小数量。行,每行包含两个整数。
2024-08-07 17:30:33
368
原创 Python | 一文搞定Python中的命令行读取若干数字
如果你需要在 Python 中读取若干数字,可以根据输入的格式和方式选择合适的方法。
2024-08-04 22:09:35
592
原创 数据结构 | 考研代码题之顺序表 | 1 查找L中值为e的数据元素若找到则返回其下标,若找不到则返回-1
假设有一个顺序表 L,其存储的所有数据元素均为不重复的正数,查找L中值为e的数据元素,若找到则返回其下标,若找不到则返回-1。
2024-08-04 11:25:51
326
原创 数据挖掘 | 实验三 决策树分类算法
使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点对应的类别作为决策结果。1、通过本次实验加深了我对决策树原理的理解,本次实验使用了4种分类算法进行分类,习了决策树模型的构建过程,分类算法,预测方法,以及决策树的可视化、最后进行交叉验证。了解pydotplus、GraphViz等相关库中决策树可视化方法的接口,结合上述构建方法中参数的设置,分析每次构建的树的层数及叶子数目。3)分别查看训练集、测试集上模型的评估指标(准确率);
2024-05-30 22:11:10
2393
原创 『PyCharm』关闭编辑器中的所有代码提示,开启纯净学习模式!
提示使用习惯了,往往不用提示代码就不会写了,所以需要把提示关了,锻炼一下自己的单词水平。
2024-05-30 22:03:18
1846
原创 『PyCharm』| 一文搞定无法导入Anaconda的环境
已存在的Anaconda环境无法导入Pycharm,点击add后仍然无任何响应。即使可以选择“Use existing environment”,退出这个页面之后也不会显示出刚刚选好的conda虚拟环境。如下所示。
2024-05-30 21:58:15
870
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人