经典DP-B 最大子段和

Given a sequence a[1],a[2],a[3]…a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.

Input

The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).

Output

For each test case, you should output two lines. The first line is “Case #:”, # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.

Sample Input

2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5

Sample Output

Case 1: 14 1 4
 
Case 2: 7 1 6

最大子段和问题,不同的是要输出开始和结束的位置。注意每种情况中间隔了一行(因为这个WA了好几遍)。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int dp[100010];
int a[100010];
int main()
{
	int t;
	scanf("%d",&t);
	int b=0;
	while(t--)
	{
		int n;
		scanf("%d",&n);
		for(int i=1;i<=n;i++)
		scanf("%d",&a[i]);
		dp[1]=a[1];
		for(int i=2;i<=n;i++)
		{
			if(dp[i-1]<0)
			dp[i]=a[i];
			else
			dp[i]=dp[i-1]+a[i];
		}
		int max=dp[1];
		int end=1;
		for(int i=2;i<=n;i++)
		{
			if(max<dp[i])
			{
				max=dp[i];
				end=i;
			}
		}
		int start=end;
		int sum=0;
		for(int i=end;i>=1;i--)
		{
			sum+=a[i];
			if(sum==max)
			{
				start=i;
			}
		}
		printf("Case %d:\n",++b);
		printf("%d %d %d\n",max,start,end);
		if(t)
		printf("\n");
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值