
chatgpt
文章平均质量分 72
学亮编程手记
学亮编程手记
展开
-
n8n、Dify和Coze的联系与区别
n8n、Dify和Coze是当前市场上三种主要的自动化工作流工具,各具特色。n8n作为开源工具,强调灵活性和高度可定制性,适合复杂流程的企业用户;Dify专注于AI应用开发,降低技术门槛,适合快速构建AI驱动的应用;Coze则定位于零代码平台,强调易用性,适合非技术团队快速搭建轻量级应用。三者均支持API集成和AI模型集成,但在定位、技术架构、适用场景、生态支持和定价上存在差异。选择工具时需根据具体需求、团队能力和预算进行权衡。原创 2025-05-18 17:22:24 · 626 阅读 · 0 评论 -
DeepSeek 在编程开发中的多元应用场景分析
身为一名程序员,你是否在面对复杂代码时感到无从下手?是否为了实现一个功能,在无数个日夜中反复调试、修改,却依旧难以达到理想效果?又是否在项目截止日期的压力下,为了提高编程效率而绞尽脑汁?相信许多程序员都有过类似的经历,在编程的道路上,我们时常面临着代码编写繁琐、效率低下、错误排查困难等诸多难题 ,这些问题不仅消耗了我们大量的时间和精力,也在一定程度上阻碍了项目的顺利推进。不过现在,有一个好消息要告诉大家!原创 2025-05-16 11:42:03 · 600 阅读 · 0 评论 -
html代码案例:俄罗斯方块网页游戏
以下是一个完整的俄罗斯方块网页游戏的HTML代码。将这段代码复制到一个.html文件中,用浏览器打开即可玩。游戏说明游戏控制:游戏功能:游戏规则:将上述代码保存为HTML文件后,用浏览器打开即可开始游戏。原创 2025-05-16 10:08:11 · 317 阅读 · 0 评论 -
基于Dify、RAGFlow和FastGPT实现Excel表格数据与大模型结合的RAG知识库智能问答
本文探讨了如何结合Dify、RAGFlow和FastGPT实现Excel表格数据与大模型的智能问答需求。通过对比三者的核心能力,文章提供了针对不同场景的工具组合方案:复杂表格处理推荐RAGFlow与FastGPT结合,多模型协作场景适合使用Dify,而快速部署场景则推荐FastGPT。此外,文章还提出了进阶优化策略、安全与部署建议,并总结了各工具的适用场景。最终建议从FastGPT快速验证MVP,逐步引入RAGFlow和Dify以实现企业级扩展。原创 2025-05-15 21:14:02 · 817 阅读 · 0 评论 -
n8n 与 Dify 的核心区别对比
n8n 和 Dify 是两款功能定位截然不同的工具,分别专注于流程自动化和AI应用开发。n8n 的核心目标是跨系统数据流转和流程自动化,适合开发者和技术团队,支持复杂数据处理和API串联,适用于跨系统自动化、IT运维和传统业务自动化等场景。Dify 则以大语言模型(LLM)为基础,专注于AI驱动的应用开发,适合业务人员和非技术用户,支持智能问答、内容生成和知识库检索等任务,适用于AI驱动应用开发、知识库智能检索和内容生成等场景。两者在技术实现、适用场景、成本和用户学习门槛上存在显著差异,但可以互补使用,形成原创 2025-05-11 12:07:02 · 1322 阅读 · 0 评论 -
下载 Hugging Face 和 ModelScope 模型到指定缓存目录的步骤
本文详细介绍了如何将 Hugging Face 和 ModelScope 的模型下载到指定缓存目录,以便在 Docker 容器中直接复用,避免重复下载。对于 Hugging Face 模型,提供了两种下载方法:使用 huggingface-cli 工具或通过 Python 代码调用 snapshot_download 函数。对于 ModelScope 模型,同样提供了命令行和 Python 代码两种下载方式。关键步骤包括提前创建缓存目录、确保目录一致性,以及通过 Docker 挂载缓存目录以复用模型文件。此原创 2025-05-11 01:01:41 · 275 阅读 · 0 评论 -
docker部署xinference(大模型本地部署工具)脚本
该脚本通过 Docker 启动一个 Xinference 本地推理服务。主要功能包括: 后台运行:使用 -d 参数让容器在后台运行。 特权与 GPU 支持:通过 --privileged 和 --gpus all 赋予容器特权并启用 GPU 加速。 自动重启:使用 --restart always 确保服务高可用。 数据持久化:通过挂载卷将配置和模型缓存(如 Hugging Face、ModelScope)保存在宿主机上,避免重复下载。 网络访问:将容器的 9997 端口映射到宿主机,支持外部访问。 镜像与原创 2025-05-11 00:59:34 · 379 阅读 · 0 评论 -
python 代码示例: 基于 LlamaIndex 构建文档问答系统
【代码】python 代码示例: 基于 LlamaIndex 构建文档问答系统。原创 2025-05-06 16:27:19 · 158 阅读 · 0 评论 -
python代码案例:通过Hugging Face工具下载AI模型与分词器
通过Hugging Face工具下载AI模型与分词器,为后续本地部署提供基础支持。原创 2025-05-06 15:28:08 · 230 阅读 · 0 评论 -
python基于LlamaIndex构建知识库代码案例:开发一个法律条文问答系统
该实现通过结构化法律文本、优化检索策略、配置专业prompt模板,可准确回答劳动合同、工资支付、劳动争议等常见问题(测试准确率达82%)。完整代码已通过BERT-wwm法律文本相似度测试,相关度召回率提升37%。该配置已在Windows 11 + RTX 3090环境下通过完整测试,可支持法律问答场景下的多轮对话和条款检索功能。建议使用Python 3.10环境运行。原创 2025-05-06 14:50:20 · 935 阅读 · 0 评论 -
Playwright 使用示例:浏览器基础操作、多浏览器同时操作
模拟设备分辨率、User-Agent等。:自动生成操作代码,适合快速原型设计。:高并发或需要非阻塞操作的场景。:调试失败用例时分析操作步骤。:需监听下载事件并处理路径。:模块化测试用例和资源管理。:跨浏览器兼容性测试。:依赖动态数据的表单。原创 2025-04-28 09:36:43 · 504 阅读 · 0 评论 -
AI 自动化框架 Stagehand 浏览器框架的使用示例
以下是 Stagehand 框架的使用示例,结合其核心 API(原创 2025-04-28 09:33:24 · 597 阅读 · 0 评论 -
Python Tensorflow 代码案例:实现一个基于TensorFlow的语音关键词识别模型
使用卷积神经网络(CNN)处理语音频谱图,识别8个短语音命令(如"yes", “no”, "up"等)。这段代码实现了一个基于TensorFlow的。原创 2025-04-27 15:21:33 · 348 阅读 · 0 评论 -
Python Tensorflow 语音识别原理实现及代码案例
由于不同对象材料的特点,声音具有不同的特性,音色本身就是抽象的东西,波形可以把抽象的音色直观的表达出来。第二,汉语的语言表达也有一定的规律,比如我们根据声音的特性识别出来一个词“hen hao”,那么这个词更有可能是“很好”而不是“ 狠好”,因为前者在汉语的表达中具有一定的意义而且会经常出现。微信聊天中的语音转文字功能,就是典型的语音识别技术。我们要实现对声音的分类,理论上也可以直接把声音的频谱数据作为评判标准,但这么做很困难,我们需要一种维度更低的特征来表示声音,梅尔频率倒谱系数就是优秀的特征之一。原创 2025-04-27 15:15:03 · 716 阅读 · 0 评论 -
Python Tensorflow 代码案例:实现一个基于迁移学习的猫狗分类模型
使用预训练的MobileNetV2作为特征提取器,并在其基础上构建自定义分类层。原创 2025-04-27 15:11:35 · 408 阅读 · 0 评论 -
Python Tensorflow 自然语言处理代码案例:文本处理
在之前的章节中,我们学习了有关离散数据、图片信息的回归和分类方法。本节课,我们想利用深度学习模型,对电影评论这样的文本信息进行分类,判断观影者是喜欢还是不喜欢该电影。让计算机处理、理解文本信息,其中涉及到自然语言处理(NLP)技术,什么是自然语言处理呢,它又有什么样的应用场景?原创 2025-04-27 15:06:09 · 589 阅读 · 0 评论 -
Python Tensorflow 迁移学习实例代码:猫狗识别
迁移学习,是把已训练好的模型(预训练模型)参数迁移到新的模型来帮助新模型训练。考虑到大部分数据或任务都是存在相关性的,所以通过迁移学习我们可以将已经学到的模型参数(也可理解为模型学到的知识)通过某种方式来分享给新模型从而加快并优化模型的学习效率,不用像大多数网络那样从零学习。我们来学习一个迁移学习的模型。原创 2025-04-27 14:46:38 · 310 阅读 · 0 评论 -
卷积模型及其常见应用场景
卷积模型,尤其是,是一种模仿生物视觉系统的深度学习模型,专门用于处理具有网格结构的数据(如图像、音频、文本等)。它的核心思想是通过“局部感知”和“参数共享”自动提取数据的层次化特征,从而高效完成分类、识别等任务。原创 2025-04-27 14:31:06 · 370 阅读 · 0 评论 -
Python tensorflow 教程:卷积模型分类图片
卷积层是一组平行的特征图(feature map),它通过在输入图像上滑动不同的卷积核并运行一定的运算而组成。此外,在每一个滑动的位置上,卷积核与输入图像之间会运行一个元素对应乘积并求和的运算以将感受野内的信息投影到特征图中的一个元素。这一滑动的过程可称为步幅 ,步幅是控制输出特征图尺寸的一个因素。卷积核的尺寸要比输入图像小得多,且重叠或平行地作用于输入图像中,一张特征图中的所有元素都是通过一个卷积核计算得出的,也即一张特征图共享了相同的权重和偏置项。举个例子,有一张3*3的特征图,与2*2。原创 2025-04-27 14:25:31 · 246 阅读 · 0 评论 -
Python 代码示例:使用scikit-learn库对鸢尾花数据集进行高斯混合模型 GMM 聚类并评估聚类效果
库对鸢尾花(Iris)数据集进行高斯混合模型(Gaussian Mixture Model, GMM)聚类,并评估聚类效果。)或尝试其他算法(如K-Means++)。如需进一步优化,可调整GMM参数(如。上述代码使用Python的。原创 2025-04-25 11:20:40 · 393 阅读 · 0 评论 -
机器学习之无监督学习(鸢尾花问题)
我们在之前的课程中学习了线性模型的搭建和训练,它们的训练数据呈现出这样的特点:一组特征对应一个标签。例如一个卧室的房子卖10万,波士顿房子在13个因素的影响下给出了房屋报价。在实际的场景中,我们的数据集可能没有如此完整的对应关系,可能我们只有卧室的数量,而其他的信息不完整。针对数据不全或标注成本高昂的情景,这节课介绍一种新的方法,无监督学习。我们利用鸢尾花的数据集进行训练,人为制造无标签数据进行演示,一起来学习吧。原创 2025-04-23 17:26:18 · 716 阅读 · 0 评论 -
python tensorflow实现一个简单的线性回归模型代码剖析
通过此代码,模型学会了输入与输出之间的简单线性映射,可用于预测新数据点的值。上述代码实现了一个简单的。原创 2025-04-23 14:34:36 · 353 阅读 · 0 评论 -
python TensorFlow 单变量线性回归示例代码剖析:构建、训练和预测的基本流程
上述代码使用TensorFlow的Keras API构建了一个简单的线性回归模型,用于学习输入。通过这段代码,可以快速理解TensorFlow构建、训练和预测的基本流程。原创 2025-04-23 11:27:34 · 276 阅读 · 0 评论 -
人工智能基础教程:简单的线性实例
你可能注意到当X = 1时,Y 是 X 的 2 倍,再看看第二组,X = 2时,Y = 4,现在很可能就是 Y = 2X 的关系,我们想验证一下猜想,于是又看了X = 3,4,5,6,7时 Y 的对应值是否和我们的猜测吻合,发现是的,于是我们得出 Y = 2X 的规律。传统的编码模式,是程序员写好规则,有输入就有预定的输出。每年的英语四六级考试成绩总能牵动一些小伙伴的心情,如果请你判断小飞同学的成绩是否合格,那么应该难不倒你,因为我们很清楚其中的判断逻辑,分数大于等于425分就合格,424分就“杯具”了。原创 2025-04-23 11:23:30 · 899 阅读 · 0 评论 -
机器学习中的SGD梯度下降法与MSE均方误差
MSE(Mean Squared Error,均方误差)是机器学习中最常用的评估指标之一,特别是在回归问题中。它就像一把尺子,用来测量模型预测值与真实值之间的差距大小。原创 2025-04-23 10:12:56 · 847 阅读 · 0 评论 -
开源实现的mcp-servers GitHub仓库地址
这两个 repo 中找到许多由社区实现的 MCP server。原创 2025-04-14 15:39:33 · 197 阅读 · 0 评论 -
mysql-mcp-server 配置及使用示例
将以下内容添加到你的 mcp client 工具中,例如cursor、cline等。将以下内容添加到你的 mcp client 工具中,例如cursor、cline等。修改.env 文件内容,将数据库连接信息修改为你的数据库连接信息。mcp json 如下。mcp json 如下。prompt格式如下。原创 2025-04-14 15:28:56 · 4726 阅读 · 0 评论 -
mysql-mcp-server安装及配置指南
模型上下文协议(MCP)实现,可安全地与 MySQL 数据库进行交互。该服务器组件促进了 AI 应用(主机/客户端)与 MySQL 数据库之间的通信,通过受控接口使数据库探索和分析更加安全且结构化。注意:MySQL MCP 服务器不是设计为独立服务器使用,而是作为 AI 应用与 MySQL 数据库之间的通信协议实现。原创 2025-04-14 10:44:54 · 4799 阅读 · 0 评论 -
基于 mysql-mcp-server xiyan-mcp-server 使用自然语言查询 MySQL 数据库的步骤
【代码】基于 mysql-mcp-server xiyan-mcp-server 使用自然语言查询 MySQL 数据库的步骤。原创 2025-04-14 10:06:57 · 1587 阅读 · 0 评论 -
大模型 MCP-Mongo-Server 使用示例
MCP-Mongo-Server 是大模型与 MongoDB 数据库交互的中间件,它允许大模型在生成响应时动态查询 MongoDB 数据。原创 2025-04-12 23:43:17 · 429 阅读 · 0 评论 -
开源 ChatBI 框架推荐及Doris+DeepSeek+Dify实现ChatBI思路分享
以下是一些开源的 ChatBI 框架推荐:原创 2025-04-03 15:38:21 · 774 阅读 · 0 评论 -
扣子基础版与专业版
links:https://www.coze.cn/open/docs/guides/edition原创 2025-04-01 08:40:47 · 219 阅读 · 0 评论 -
Dify知识库对文档上传的限制及要求:文档数量、单文件大小上限
支持格式包括TXT、Markdown、PDF、HTML、DOCX、CSV等。支持批量上传,具体批量数量上限取决于订阅计划。例如,免费版可能限制单次批量上传数量,企业版可放宽限制。支持集成ETL服务(如Unstructured服务)以解析复杂格式,例如EML、MSG、PPTX等。对于需要更大容量的场景,可通过创建多个知识库并整合使用。从Notion或网页同步数据时,需关注API速率限制,避免高频请求触发配额问题。超过15MB的文档建议使用“父子分段”模式,避免因长文本分段不当影响检索效果。原创 2025-03-31 17:00:03 · 1504 阅读 · 0 评论 -
QAnything README
知识库数据量大的场景下两阶段优势非常明显,如果只用一阶段embedding检索,随着数据量增大会出现检索退化的问题,如下图中绿线所示,二阶段rerank重排后能实现准确率稳定增长,即数据越多,效果越好。QAnything使用的检索组件强大的双语和跨语种语义表征能力【基于MTEB的语义表征评测指标基于LlamaIndex的RAG评测,表现SOTA【基于LlamaIndex的RAG评测指标。原创 2025-03-31 09:59:32 · 923 阅读 · 0 评论 -
QAnything FAQ: 使用ollama本地服务时问答效果不佳
【代码】QAnything FAQ: 使用ollama本地服务时问答效果不佳。原创 2025-03-31 09:50:31 · 810 阅读 · 0 评论 -
AIGC和AGI介绍
AIGC(Artificial Intelligence Generated Content,人工智能生成内容)是指利用人工智能技术自动生成各种类型的内容,包括文本、图像、音频、视频等。AIGC通过深度学习、自然语言处理(NLP)、计算机视觉等技术,使机器能够理解、生成和优化内容,从而在内容生产过程中实现自动化和智能化。它基于生成对抗网络(GAN)、大型预训练模型等技术方法,通过已有数据的学习和识别,以适当的泛化能力生成相关内容。原创 2025-03-31 09:48:43 · 583 阅读 · 0 评论 -
网易有道开源本地知识库问答系统 QAnything 介绍及本地部署
(Embedding + Rerank),能有效提升大规模数据检索的准确率,数据量越大效果越好。此外,QAnything 支持跨语种问答(中英文混合问答),并可通过私有化部署保障数据安全,适用于企业级应用和个人知识库管理。QAnything 是由网易有道推出的开源本地知识库问答系统,基于 RAG(检索增强生成)技术开发,支持多种文件格式(如 PDF、Word、PPT、图片、网页链接等)的离线问答。服务启动后,浏览器访问。即可上传文件并提问。原创 2025-03-31 09:40:26 · 714 阅读 · 0 评论 -
网易有道开源知识库QAnything一键安装脚本
【代码】网易有道开源知识库QAnything一键安装脚本。原创 2025-03-31 09:37:15 · 186 阅读 · 0 评论 -
基于 OpenManus 的 Python 代码实现示例
【代码】基于 OpenManus 的 Python 代码实现示例。原创 2025-03-29 13:41:01 · 424 阅读 · 0 评论 -
Spring AI Alibaba OpenManus 代码示例
【代码】Spring AI Alibaba OpenManus 代码示例。原创 2025-03-29 13:27:53 · 629 阅读 · 0 评论