
Python
学亮编程手记
学亮编程手记
展开
-
python 代码案例:获取并解析某法律条文网页内容并进行数据格式整理
【代码】python 代码案例:爬取劳动法网页内容并进行数据格式整理。原创 2025-05-06 15:53:25 · 1078 阅读 · 0 评论 -
Python可变参数代码示例
可变参数是Python中非常实用的功能,它允许函数接收任意数量的参数。可变参数有两种类型:位置参数(以下是一些详细的代码示例,帮助你更好地理解它们的用法。用于接收任意数量的关键字参数,这些参数会被封装成一个字典(用于接收任意数量的位置参数,这些参数会被封装成一个元组(用于接收任意数量的关键字参数,参数会被封装成一个字典。用于接收任意数量的位置参数,参数会被封装成一个元组。示例1:打印所有关键字参数。与其他普通参数结合使用,但。操作符将它们解包为参数。与其他普通参数结合使用。示例2:打印所有参数。原创 2025-05-02 14:18:47 · 308 阅读 · 0 评论 -
常见的Python面试题及答案: 涵盖基础知识、数据结构、函数、面向对象、模块与包、异常处理等方面
• 答案:装饰器是一种设计模式,用于在不修改函数或类的代码的情况下,动态地添加功能。装饰器本质上是一个函数,它接收一个函数作为参数,并返回一个新的函数。• 答案:上下文管理器是一种用于管理资源的机制,通常用于确保资源在使用后能够正确地释放。• 答案:在Python中,变量的定义非常简单,只需要使用等号“=”将变量名和值进行赋值即可。• 答案:在Python中,函数可以返回多个值,这些值会被封装成一个元组。• 答案:包是一个包含多个模块的目录,通常在包的目录中包含一个。)是一个无序且不重复的元素集合。原创 2025-05-02 14:06:22 · 344 阅读 · 0 评论 -
Python Tensorflow 代码案例:实现一个基于TensorFlow的语音关键词识别模型
使用卷积神经网络(CNN)处理语音频谱图,识别8个短语音命令(如"yes", “no”, "up"等)。这段代码实现了一个基于TensorFlow的。原创 2025-04-27 15:21:33 · 348 阅读 · 0 评论 -
Python Tensorflow 语音识别原理实现及代码案例
由于不同对象材料的特点,声音具有不同的特性,音色本身就是抽象的东西,波形可以把抽象的音色直观的表达出来。第二,汉语的语言表达也有一定的规律,比如我们根据声音的特性识别出来一个词“hen hao”,那么这个词更有可能是“很好”而不是“ 狠好”,因为前者在汉语的表达中具有一定的意义而且会经常出现。微信聊天中的语音转文字功能,就是典型的语音识别技术。我们要实现对声音的分类,理论上也可以直接把声音的频谱数据作为评判标准,但这么做很困难,我们需要一种维度更低的特征来表示声音,梅尔频率倒谱系数就是优秀的特征之一。原创 2025-04-27 15:15:03 · 716 阅读 · 0 评论 -
Python Tensorflow 代码案例:实现一个基于迁移学习的猫狗分类模型
使用预训练的MobileNetV2作为特征提取器,并在其基础上构建自定义分类层。原创 2025-04-27 15:11:35 · 408 阅读 · 0 评论 -
Python Tensorflow 自然语言处理代码案例:文本处理
在之前的章节中,我们学习了有关离散数据、图片信息的回归和分类方法。本节课,我们想利用深度学习模型,对电影评论这样的文本信息进行分类,判断观影者是喜欢还是不喜欢该电影。让计算机处理、理解文本信息,其中涉及到自然语言处理(NLP)技术,什么是自然语言处理呢,它又有什么样的应用场景?原创 2025-04-27 15:06:09 · 589 阅读 · 0 评论 -
Python Tensorflow 迁移学习实例代码:猫狗识别
迁移学习,是把已训练好的模型(预训练模型)参数迁移到新的模型来帮助新模型训练。考虑到大部分数据或任务都是存在相关性的,所以通过迁移学习我们可以将已经学到的模型参数(也可理解为模型学到的知识)通过某种方式来分享给新模型从而加快并优化模型的学习效率,不用像大多数网络那样从零学习。我们来学习一个迁移学习的模型。原创 2025-04-27 14:46:38 · 310 阅读 · 0 评论 -
Python tensorflow 教程:卷积模型分类图片
卷积层是一组平行的特征图(feature map),它通过在输入图像上滑动不同的卷积核并运行一定的运算而组成。此外,在每一个滑动的位置上,卷积核与输入图像之间会运行一个元素对应乘积并求和的运算以将感受野内的信息投影到特征图中的一个元素。这一滑动的过程可称为步幅 ,步幅是控制输出特征图尺寸的一个因素。卷积核的尺寸要比输入图像小得多,且重叠或平行地作用于输入图像中,一张特征图中的所有元素都是通过一个卷积核计算得出的,也即一张特征图共享了相同的权重和偏置项。举个例子,有一张3*3的特征图,与2*2。原创 2025-04-27 14:25:31 · 246 阅读 · 0 评论 -
Python 使用 TensorFlow 的 Keras API 构建一个简单的神经网络模型,用于对 Fashion MNIST 数据集进行分类
上述代码使用 TensorFlow 的 Keras API 构建了一个简单的神经网络模型,用于对 Fashion MNIST 数据集进行分类。原创 2025-04-25 14:17:30 · 724 阅读 · 0 评论 -
Python 代码示例:使用scikit-learn库对鸢尾花数据集进行高斯混合模型 GMM 聚类并评估聚类效果
库对鸢尾花(Iris)数据集进行高斯混合模型(Gaussian Mixture Model, GMM)聚类,并评估聚类效果。)或尝试其他算法(如K-Means++)。如需进一步优化,可调整GMM参数(如。上述代码使用Python的。原创 2025-04-25 11:20:40 · 393 阅读 · 0 评论 -
机器学习之无监督学习(鸢尾花问题)
我们在之前的课程中学习了线性模型的搭建和训练,它们的训练数据呈现出这样的特点:一组特征对应一个标签。例如一个卧室的房子卖10万,波士顿房子在13个因素的影响下给出了房屋报价。在实际的场景中,我们的数据集可能没有如此完整的对应关系,可能我们只有卧室的数量,而其他的信息不完整。针对数据不全或标注成本高昂的情景,这节课介绍一种新的方法,无监督学习。我们利用鸢尾花的数据集进行训练,人为制造无标签数据进行演示,一起来学习吧。原创 2025-04-23 17:26:18 · 716 阅读 · 0 评论 -
python TensorFlow 简单的线性案例——房价预测
对于同样的事物我们可以提取出不同的特征,比如上述第一个样例的卧室个数,比如第二个样例的13个不同维度指标,它们都是特征。在本节课中,我们将再次熟悉机器学习的线性模型,利用TensorFlow框架搭建网络模型,掌握建立模型的方法,逐步实现网络的预测功能。在此基础之上,我们将接触更高维度的特征输入,学会在众多的输入信息中寻找到有效的区分维度,从而提升预测效果。下面来看一个真实的案例,波士顿房价分析。回顾一下,优化器是构建模型参数的策略,优化器会在现有模型的基础上对参数进行优化,使得模型的预测结果更加准确。原创 2025-04-23 17:09:22 · 753 阅读 · 0 评论 -
机器学习中的SGD梯度下降法与MSE均方误差
MSE(Mean Squared Error,均方误差)是机器学习中最常用的评估指标之一,特别是在回归问题中。它就像一把尺子,用来测量模型预测值与真实值之间的差距大小。原创 2025-04-23 10:12:56 · 847 阅读 · 0 评论 -
Python、C#、JavaScript和Java中使用eval函数或类似功能执行代码的示例
JDK 11+已弃用Nashorn引擎(默认JS引擎),需改用GraalVM或其他库。:优先使用语言提供的安全替代方案,避免直接执行不可信字符串代码。以下是Python、C#、JavaScript和Java中使用。存在安全风险,建议仅用于可信输入,或使用。:反射或表达式树(更安全但复杂)。JavaScript的。限制为字面量表达式。原创 2025-04-23 09:03:47 · 292 阅读 · 0 评论 -
python eval() 函数的局限性
均可执行动态代码,但若输入来自用户,可能引发代码注入攻击(如删除文件、读取敏感数据)。(如数学运算、逻辑判断等),并返回计算结果。若需执行多行代码或语句(如函数定义、循环),必须使用。:除非绝对必要,优先选择静态代码或安全替代方案(如。执行任何Python代码,它仅能用于执行。只能处理可求值的表达式(如。),无法执行语句(如。原创 2025-04-23 09:02:38 · 153 阅读 · 0 评论 -
Python exec()函数:可以执行绝大多数Python代码,包括多行语句、函数定义、类定义、模块导入等
Python代码,但需谨慎使用以避免安全漏洞。在必须动态执行的场景下,应严格限制输入来源和执行环境。对于简单需求,优先选择更安全的替代方案(如。Python代码,包括多行语句、函数定义、类定义、模块导入等,但它并非能执行。Python代码,且存在一些限制和安全风险。原创 2025-04-23 09:01:44 · 490 阅读 · 0 评论 -
python eval函数:动态执行字符串形式代码的内置函数
eval的命名直指其“动态求值”的本质,虽强大但需谨慎。现代开发中,更推荐使用安全的替代方案或严格限制其执行环境。原创 2025-04-23 09:00:34 · 472 阅读 · 0 评论 -
使用PyQt5和ADB、Minicap 实现雷电模拟器中QQ应用的实时屏幕显示,并支持点击等交互操作
Minicap- 用于高效获取安卓设备屏幕实时流ADB- 用于与雷电模拟器交互PyQt5- 创建GUI界面并显示实时屏幕Minitouch- 用于模拟触摸操作(可选)原创 2025-04-21 21:32:39 · 569 阅读 · 0 评论 -
使用PyQt和ADB操作雷电模拟器中QQ应用的完整指南
通过这个完整的解决方案,你可以轻松实现PyQt与雷电模拟器的交互,并对QQ应用进行自动化控制和监控。原创 2025-04-21 21:25:39 · 882 阅读 · 0 评论 -
安卓模拟器推荐:使用PyQt5和ADB操作安卓模拟器中的QQ应用(场景)
下面我将提供一个完整的Python代码示例,展示如何使用PyQt5创建GUI界面,通过ADB命令操作安卓模拟器中的QQ应用,包括启动QQ、获取屏幕截图等功能。原创 2025-04-21 21:21:33 · 413 阅读 · 0 评论 -
使用PyQt5和ADB操作安卓模拟器中的QQ应用
下面我将提供一个完整的Python代码示例,展示如何使用PyQt5创建GUI界面,通过ADB命令操作安卓模拟器中的QQ应用,包括启动QQ、获取屏幕截图等功能。原创 2025-04-21 21:18:29 · 728 阅读 · 0 评论 -
PyQt5与ADB结合控制安卓模拟器及屏幕截图
下面是一个完整的Python代码示例,展示如何使用PyQt5创建GUI界面,通过ADB命令运行安卓模拟器中的应用程序,并获取手机屏幕截图。原创 2025-04-21 21:13:45 · 332 阅读 · 0 评论 -
Python 包管理工具 UV 功能介绍及安装
是用于安装(一个高性能 Python 包管理工具)的命令。原创 2025-04-14 16:59:32 · 1229 阅读 · 0 评论 -
Python 高性能 ASGI 服务器 Uvicorn 库使用指南
Uvicorn是一个轻量级、高性能的ASGI服务器,由Starlette框架的作者编写。它基于asyncio库实现异步I/O操作,支持HTTP和WebSocket协议。Uvicorn使用uvloop作为事件循环和httptools进行HTTP解析,因此比传统的Python服务器更快。高性能:基于uvloop和httptools构建,支持高吞吐量和低延迟支持HTTP/1.1和WebSockets热重载:开发模式下支持代码热重载灵活的配置:通过命令行参数或Python代码自定义运行选项。原创 2025-04-14 16:47:00 · 834 阅读 · 0 评论 -
python pymysql报错:pymysql.err.OperationalError: (1130, “host.docker.internal‘ is not allowed to conne
主机名连接MySQL时被拒绝,原因是MySQL服务器未授权该主机访问。这个错误表明您的Python脚本尝试通过。若仍失败,尝试直接使用宿主机IP替代。,并检查DNS解析是否正常。原创 2025-04-01 15:09:16 · 917 阅读 · 0 评论 -
python3.6使用mysql-connector-python报错:SyntaxError: future feature annotations is not defined
方案适用场景操作难度稳定性升级Python长期项目中等高降级驱动版本紧急修复低中修改库代码临时测试低低更换驱动灵活调整低高推荐优先级方案一 > 方案四 > 方案二 > 方案三。原创 2025-04-01 13:39:35 · 440 阅读 · 0 评论 -
python统计MySQL表增长率并发送邮件
【代码】python统计MySQL表增长率并发送邮件。原创 2025-04-01 11:33:57 · 300 阅读 · 0 评论 -
Python Playwright 使用示例:浏览器控制、文件处理、移动端适配、异步操作、测试框架集成等
len。原创 2025-03-29 13:44:31 · 198 阅读 · 0 评论 -
基于 OpenManus 的 Python 代码实现示例
【代码】基于 OpenManus 的 Python 代码实现示例。原创 2025-03-29 13:41:01 · 424 阅读 · 0 评论 -
python代码案例:实现监控 MySQL 表数据文件增长趋势并触发告警的完整代码
中的数据库连接和告警参数。代码实现步骤如下——原创 2025-03-28 17:01:11 · 267 阅读 · 0 评论 -
PyTorch 深度学习框架学习建议
它的设计目标是让研究人员和开发者能够快速实验、灵活调整模型,同时支持高效的计算(如 GPU 加速)。PyTorch 的代码风格接近 Python 原生语法,因此对新手友好,适合从学术研究到工业落地的多种场景。PyTorch 的 API 设计简洁,与 Python 的语法高度兼容。例如,你可以像操作 NumPy 数组一样处理 PyTorch 的“张量”(Tensor),但张量还支持 GPU 加速计算。模块能自动计算梯度(导数),省去了手动推导复杂数学公式的麻烦,让反向传播(优化模型参数的核心步骤)变得简单。原创 2025-03-28 14:15:26 · 787 阅读 · 0 评论 -
python pip install ray[default] 和 pip install ray 的区别
仅包含最小依赖,可能缺少部分高级功能所需的库(如 Dashboard 的 Web 界面依赖、GPU 加速库等)。若后续需要扩展功能,需手动安装额外依赖。),包括基础的分布式任务调度、Actor 模型和对象存储等基本功能。适合只需要基础分布式计算能力的场景,例如简单的任务并行化或单机测试。安装完整功能包,包含 Ray 核心模块。仅安装 Ray 的核心模块(,除非明确需要最小化安装。原创 2025-03-28 13:34:10 · 465 阅读 · 0 评论 -
Python Dash框架介绍及构建一个简单Dash应用
【代码】Python Dash框架介绍及构建一个简单Dash应用。原创 2025-03-23 18:30:11 · 509 阅读 · 0 评论 -
python动态属性绑定及__slots__ 的限制原理
【代码】python动态属性绑定及__slots__ 的限制原理。原创 2025-03-15 18:41:02 · 225 阅读 · 0 评论 -
Python 中动态属性和方法绑定代码示例
虽然灵活,但过度使用动态绑定会降低代码可维护性。若需限制动态属性,可使用。原创 2025-03-15 17:50:02 · 137 阅读 · 0 评论 -
Linux运维:使用 Python2 SimpleHTTPServer 模块和 Python3 http.server 模块启动一个http服务访问当前目录文件,并监听8088端口
无需安装(Python 2)或(Python 3)是 Python 标准库的一部分。注意 Python 版本:根据系统环境选择python或python3命令。原创 2025-03-14 15:36:53 · 550 阅读 · 0 评论 -
Python yield关键字代码示例
当调用生成器函数时,返回一个生成器对象,,这类函数返回一个可迭代的生成器对象,而非一次性计算所有结果。原创 2025-03-08 23:08:15 · 363 阅读 · 0 评论 -
Python strip()字符串函数详解:移除字符串头尾的指定字符
strip()是Python字符串处理的核心方法之一,用于移除字符串的指定字符(默认为空白字符),常用于数据清洗、格式化输入等场景。原创 2025-03-08 22:57:41 · 527 阅读 · 0 评论 -
python生成器详解
场景类型生成器作用传统方式痛点大数据处理按需加载,内存占用恒定内存爆炸风险实时流数据持续产出数据,支持无限序列无法处理持续输入复杂计算分阶段产出中间结果需等待全部计算完成资源敏感环境适用于内存受限设备(如嵌入式系统)资源不足导致程序崩溃设计意义:生成器通过yield将程序执行流切割为可控片段,在需要时触发计算,这种“即用即产”模式是处理现代数据密集型任务的核心工具之一。原创 2025-03-08 22:52:22 · 286 阅读 · 0 评论