DP专题1 - leetcode53. Maximum Subarray/300. Longest Increasing Subsequence - 经典

53. Maximum Subarray

题目描述

最大连续子序列和。(至少包含一个数组)

例子

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

思想
法1 - DP。dp[i]表示以i位置结尾的最大值,dp[i] = max(dp[i-1] + nums[i], nums[i]);
法2 - 贪心。如果之前的和小于0,则从当前数字开始。即如果summ<0,则将summ置0;否则继续summ + num。
法3 - 分治法
考虑区间[l, r]内的答案如何计算?
令 mid = (l + r) / 2,则该区间的答案是三部分取最大值,分别是:
(a) 区间 [l, mid] 内的答案(递归)。
(b) 区间 [mid + 1, r] 内的答案(递归)。
(c) 跨越 mid和mid+1 的连续子序列。
其中,(c) 部分只需要从 mid 开始向 l 找连续的最大值,以及从 mid+1 开始向 r 找最大值即可,在线性时间内可以完成。
递归终止条件显然是 l==r ,此时直接返回 nums[l]。

每层时间复杂度是 O(n),总共有 O(logn) 层,故总时间复杂度是 O(nlogn)。

解法1
可以优化空间复杂度,优化后类似法2

class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        res = nums[0]
        dp = [0] * len(nums)    # dp[i]表示以i位置结尾的最大值
        dp[0] = nums[0]
        for i in range(1, len(nums)):
            dp[i] = max(dp[i-1] + nums[i], nums[i])
            res = max(res, dp[i])
        return res

解法2

class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        res = summ = nums[0]
        for num in nums[1:]:
            if summ < 0:
                summ = 0
            summ += num
            res = max(res, summ)
        return res

解法3

class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        return self.helper(0, len(nums)-1, nums)
    
    def helper(self, left, right, nums):
        if left == right:
            return nums[left]
        
        mid = (left + right) >> 1
        # The maxSum including mid and mid+1
        lmax = nums[mid]
        rmax = nums[mid+1]
        lsum = rsum = 0
        for i in range(mid, left-1, -1):
            lsum += nums[i]**加粗样式**
            lmax = max(lsum, lmax)
        for i in range(mid+1, right+1):
            rsum += nums[i]
            rmax = max(rsum, rmax)
            
        return max(max(self.helper(left, mid, nums), self.helper(mid+1, right, nums)), lmax+rmax)

300. Longest Increasing Subsequence

题目描述

给定无序整数数组,输出最长递增子序列长度。(不连续)

例子

Input: [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.

思想
看到最大,最长 → 想到DP。
法1 - dp[i]表示以nums[i]结尾的最长递增子序列的长度;
初始状态:dp = [1] * len(nums);
状态方程:dp[i] = max(dp[i], dp[j] + 1) if nums[j] < nums[i] 对于j=0,1…i-1;
时间复杂度O(n^2)。
法2 - 优化,时间复杂度(nlogn)

对于一个上升子序列,显然当前最后一个元素越小,越有利于添加新的元素,这样LIS长度自然更长。

维护一arr数组,数组元素表示长度为i+1的LIS结尾元素的最小值(保证每一位都是最小值), 此时arr数组的长度就是LIS的长度

对于每一个num,如果≥arr[-1], 直接插入尾部;否则找到arr第一个大于num的位置, 替换

解法1

class Solution(object):
    def lengthOfLIS(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if not nums:
            return 0
        
        dp = [1] * len(nums)    # dp[i]表示以i结尾的最长递增子序列的长度
        for i in range(len(nums)):
            for j in range(i):
                if nums[j] < nums[i]:
                    dp[i] = max(dp[i], dp[j] + 1)
        return max(dp)

解法2
存储长为i+1的LIS结尾元素的最小值

class Solution(object):
    def lengthOfLIS(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        arr = []
        for num in nums:
            if not arr or num > arr[-1]:
                arr.append(num)
            else:
                pos = self.getFirstLarger(arr, num)
                arr[pos] = num
        return len(arr)
                
    def getFirstLarger(self, arr, num):
        l = 0
        r = len(arr) - 1
        while l <= r:
            mid = (l + r) >> 1
            if arr[mid] < num:
                l = mid + 1
            else:
                if mid > 0 and arr[mid-1] > num:
                    r = mid - 1
                else:
                    return mid

Ref
最大连续子序列和的分治解法

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值