Flink学习(二)-基础概念

一、流处理

分为有界流(bounded stream)和无界流(unbounded stream)。

通过上图 ,可以知道,

有界流:有明显的边界;而无界流,则只有开始,没有结束。

批处理是有界数据流处理的范例。在这种模式下,你可以选择在计算结果输出之前输入整个数据集,这也就意味着你可以对整个数据集的数据进行排序、统计或汇总计算后再输出结果。

流处理正相反,其涉及无界数据流。至少理论上来说,它的数据输入永远不会结束,因此程序必须持续不断地对到达的数据进行处理。

 二、Flink 程序基本组成

由 source 开始、经过自定义算子转换(Transformation)成的 dataflow后,以一个或者多个 sink 结束。

 三、算子之间数据传输方式

1,一对一直传)模式

可以保留元素的分区和顺序信息,即同一分区的数据只会进入到下游算子的同一分区。

2,重新分发模式

会更改数据所在的流分区。当你在程序中选择使用不同的 transformation,每个算子子任务也会根据不同的 transformation 将数据发送到不同的目标子任务。

常见的数据分发模式

  • keyBy()(通过散列键重新分区);
  • broadcast()(广播);
  • rebalance()(随机重新分发)

 

四、自定义时间流处理

关注事件本身发生的顺序而不是事件被传输以及处理的顺序;

记录在数据流中的事件时间的时间戳,而不是处理数据的机器时钟的时间戳。

五,有状态流处理

意味着如何处理一个事件可能取决于该事件之前所有事件数据的累积结果。有状态算子的并行实例组在存储其对应状态时通常是按照键(key)进行分片存储的。每个并行实例算子负责处理一组特定键的事件数据,并且这组键对应的状态会保存在本地。

六,通过状态快照实现的容错

通过状态快照和流重放两种方式的组合,Flink 能够提供可容错的,精确一次计算的语义。这些状态快照在执行时会获取并存储分布式 pipeline 中整体的状态,它会将数据源中消费数据的偏移量记录下来,并将整个 job graph 中算子获取到该数据(记录的偏移量对应的数据)时的状态记录并存储下来。当发生故障时,Flink 作业会恢复上次存储的状态,重置数据源从状态中记录的上次消费的偏移量开始重新进行消费处理。而且状态快照在执行时会异步获取状态并存储,并不会阻塞正在进行的数据处理逻辑。

  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。
### 回答1: Apache Flink 是一个分布式流处理框架,它可以处理实时数据流和批处理数据。如果你想学习 Apache Flink,可以从以下几个方面入手: 1. 学习 Flink 的基本概念和架构,包括数据流、数据源、数据转换、数据汇聚等。 2. 学习 Flink 的编程模型和 API,包括 DataSet API 和 DataStream API。 3. 学习 Flink 的部署和配置,包括集群部署和单机部署。 4. 学习 Flink 的应用场景和实践,包括实时数据处理、批处理、机器学习等。 如果你是零基础入门,可以先从 Flink 的官方文档入手,了解 Flink 的基本概念和架构,然后通过实践来深入学习 Flink 的编程模型和 API。同时,可以参考一些 Flink 的教程和案例,加深对 Flink 的理解和应用。 ### 回答2: Apache Flink是一个开源的流处理框架,能够对流数据进行实时处理和分析。它提供了多种处理功能,如数据流的转换、聚合、窗口计算等。在大数据时代,实时处理已经成为了一个不可或缺的需求,因此学习和掌握Flink框架具有非常重要的意义。 下面是Flink的零基础入门指南: 1. Flink的运行环境 Flink的运行环境可以分为本地模式和集群模式。在本地模式下,可以通过Flink命令自动启动一个Flink进程,进行代码测试与调试工作;在集群模式下,需要先构建一个Flink集群,然后在集群中启动Flink程序。 2. Flink的数据模型 Flink的数据模型包括了DataStream和DataSet两种。DataStream主要用于流计算,而DataSet主要用于批处理计算。在Flink中,数据是以并行的数据流或批次进行传输的。 3. Flink的操作符 Flink中的操作符包括了以下几种:Source(数据源),Transformation(转换操作)和Sink(数据输出)。Source用于获取数据源,Transformation用于数据处理,而Sink则是将计算结果输出到外部。 4. Flink的核心API Flink的核心API包括了DataStream API和DataSet API两种。DataStream API主要用于流数据处理,而DataSet API主要用于批处理数据。其中,DataStream API提供了多种类型的转换操作,如map、filter等;而DataSet API则提供了多种聚合和关联操作,如group、join等。 5. Flink的窗口函数 在流处理中,为了处理非无限的数据流,通常需要将数据按照一定的规则分成有限大小的窗口。而Flink的窗口函数就是用于实现这个功能的。Flink提供了多种窗口函数,如滚动窗口、滑动窗口、会话窗口等。 总之,掌握Flink框架具有重要的意义,尤其是对于需要进行实时大数据处理的行业。通过对Flink的API和窗口函数的了解,可以更好地了解其中的分布式计算和容错机制,从而更好地运用Flink进行大数据实时计算。 ### 回答3: 作为一种分布式流式计算框架,Apache Flink 不仅可以处理批处理任务,在处理实时数据的时候也十分出色。而且,Apache Flink 在容错性、可伸缩性和高效性方面都表现得相当优秀,并且它具有易于使用的 Java API 和 SQL 接口。 如果您是想要学习 Apache Flink 的零基础用户,以下是一些可以帮助您入门的建议。 1.去官网了解 Flink 的基本知识 在开始学习 Apache Flink 之前,建议去官网先了解一下 Flink 基本的架构和使用方法,以及相关的概念和体系架构。这样可以帮助您更快地开始构建您自己的 Flink 应用程序。 2.学习 Flink API Flink 提供了三种类型的 API:DataStream API、DataSet API 和 Table/SQL API。其中,DataStream API 和 DataSet API 是 Flink 的核心 API,可以通过编写 Java 或 Scala 代码来使用。而 Table/SQL API 则是最近推出的一种新型 API,可以更方便地处理 SQL 查询。 3.使用文档和示例 Apache Flink 官网提供了丰富的文档和示例代码,以帮助用户更好地理解和应用 Flink。通过按照教程操作,并对示例代码进行修改和调试,可以帮助您更快地了解如何使用 Flink 并使其工作。 4.尝试使用 Flink 社区现成的解决方案 Apache Flink 的社区已经开发了许多解决方案和应用场景,比如 FlinkML、FlinkCEP、FlinkGraph 等等,可以用来解决不同的业务需求和数据处理问题。尝试使用这些现成的解决方案,并在实践中不断优化和修改,可以巩固您对 Flink 的理解和使用。 总之,学习 Apache Flink 需要一定的时间和耐心,但掌握 Flink 的核心概念和 API 可以帮助您更轻松地构建快速、可靠的数据流处理系统。尝试多练习并与 Flink 社区互动,在实践中不断探索 Flink 系统的优化和升级,相信您一定能在 Flink 技术上迅速成长。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值