树模型(三):集成学习

常见的集成学习框架有三种:Bagging,Boosting 和 Stacking。

1 模型方差与偏差(缘起)

在 Bagging 和 Boosting 框架中,通过计算基模型的期望和方差我们可以得到模型整体的期望和方差。为了简化模型,我们假设基模型的期望为 μ \mu μ,方差 σ 2 \sigma ^{2} σ2,模型的权重为 r r r,两两模型间的相关系数$\rho $相等。由于 Bagging 和 Boosting 的基模型都是线性组成的,那么有:

模型总体期望:

模型总体方差(公式推导参考协方差的性质,协方差与方差的关系):

2 Bagging

2.1 基本思想

Bagging(Bootstrap aggregating)思路是这样的:

  1. 从原始样本集合 中 有放回抽取n个训练样本,共进行k论抽取,得到k个训练集。
  2. 对于k个训练集,分别训练k个模型(弱分类器,如决策树)
  3. 对于分类问题:k个分类器投票表决,选取投票数最高的那种分类作为最终分类;对于回归问题:k个回归器预测结果的均值作为最后预测结果

2.2 方差与偏差

对于 Bagging 来说,每个基模型的权重等于 1/m 且期望近似相等,故我们可以得到:

通过上式我们可以看到:

  • 整体模型的期望等于基模型的期望,这也就意味着整体模型的偏差和基模型的偏差近似。
  • 整体模型的方差小于等于基模型的方差,当且仅当相关性为 1 时取等号,随着基模型数量增多,整体模型的方差减少,从而防止过拟合的能力增强,模型的准确度得到提高。但是,模型的准确度一定会无限逼近于 1 吗?并不一定,当基模型数增加到一定程度时,方差公式第一项的改变对整体方差的作用很小,防止过拟合的能力达到极限,这便是准确度的极限了。

在此我们知道了为什么 Bagging 中的基模型一定要为强模型,如果 Bagging 使用弱模型则会导致整体模型的偏差提高,而准确度降低。

3 Boosting

3.1 基本思想

Boosting的思路是这样的,本质是不断迭代的过程:

  1. 对于训练集中每个样本建立权值 w i w_{i} wi,代表对每个样本的关注度。当某个样本被误分类的概率很高时,需要加大对该样本的权值 w i w_{i} wi
  2. 迭代训练的过程中,每一轮迭代中的每一步都会生成一个弱分类器/弱回归器。通过某种策略将其组合,作为最终模型。不同的Boosting实现 方法不尽相同

3.2 方差与偏差

对于 Boosting 来说,由于基模型共用同一套训练集,所以基模型间具有强相关性,故模型间的相关系数近似等于 1,针对 Boosting 化简公式为:

通过观察整体方差的表达式我们容易发现:

  • 整体模型的方差等于基模型的方差,如果基模型不是弱模型,其方差相对较大,这将导致整体模型的方差很大,即无法达到防止过拟合的效果。因此,Boosting 框架中的基模型必须为弱模型。
  • 此外 Boosting 框架中采用基于贪心策略的前向加法,整体模型的期望由基模型的期望累加而成,所以随着基模型数的增多,整体模型的期望值增加,整体模型的准确度提高。

4 Stacking

Stacking 是先用全部数据训练好基模型,然后每个基模型都对每个训练样本进行的预测,其预测值将作为训练样本的特征值,最终会得到新的训练样本,然后基于新的训练样本进行训练得到模型,然后得到最终预测结果

5 Bagging和Boosting的区别

  1. 样本选择:Bagging采用的是随机有放回的抽样;Boosting每一轮训练都使用同样的训练集,改变的只是每个样本的权值 w i w_{i} wi
  2. 样本权值: Bagging认为每个样本拥有同样的权值,即人人平等;Boosting会根据错误率来调整样本权值,错误率越大,权值越大,会哭的孩子有奶吃,就是这个道理。
  3. 弱分类器权值:Bagging认为每个弱分类器拥有同样的权值,即干好干坏都发一样的工资;Boosting会根据分类误差小的弱分类器分配更高的权值,即干得好升职加薪。
  4. 并行计算:Bagging各个弱分类器可以并行生成互不干扰;Boosting有迭代概念,各个弱分类器必须按照顺序生成。
  5. 串行的Boosting和并行的Bagging,前者通过对错判训练样本重新赋权来重复训练,以提高基学习器准确性,降低偏差;后者通过采样方法,训练出多样性的基学习器,降低方差
  • Bagging + 决策树 = RF
  • 一阶Gradient Boosting + 决策树 = GBDT
  • 二阶Gradient Boosting + 一阶Gradi Boosting + 决策树 = XGBoost
  • 2
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
集成学习中的决策模型对于糖尿病预测有着重要的作用。决策是一种基于状结构的分类模型,通过一系列的决策规则来对输入数据进行分类或回归。以下是决策模型在糖尿病预测中的作用: 1. 特征选择:决策模型可以通过计算特征的重要性来帮助选择对糖尿病预测有影响的特征。通过分析决策节点的划分准则,可以了解哪些特征在预测糖尿病时起到关键作用。 2. 可解释性:决策模型具有很好的可解释性,可以直观地展示特征之间的关系和预测结果的推理过程。这对于医疗领域非常重要,因为医生和患者需要理解预测结果背后的原因和依据。 3. 预测能力:决策模型可以根据输入特征的不同组合来进行分类预测。通过学习训练数据中的模式和规律,决策可以对新的未见数据进行准确的预测,从而帮助医生和患者进行糖尿病的诊断和治疗决策。 4. 缺失值处理:决策模型对于缺失值的处理具有鲁棒性。在糖尿病预测中,可能会有一些特征数据缺失,而决策可以通过其他特征的信息来填充缺失值,从而保持预测的准确性。 需要注意的是,决策模型在处理高维数据和处理类别不平衡的数据时可能存在一些限制。在实际应用中,可以通过集成学习方法(如随机森林、梯度提升等)来进一步提升决策模型的性能和稳定性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值