-
题目描述:
-
有一棵无限完全二叉树,他的根节点是1/1,且任意一个节点p/q的左儿子节点和右儿子节点分别是,p/(p+q)和(p+q)/q。如下图:
它的层次遍历结果如下:
1/1, 1/2, 2/1, 1/3, 3/2, 2/3, 3/1,...
有如下两类问题:
1.找到层次遍历的第n个数字。如,n为2时,该数字为1/2;
2.给定一个数字p/q,输出它在层次遍历中的顺序,如p/q为1/2时,其顺序为2;
-
输入:
-
输入包含多组测试用例,输入的第一行为一个整数T,代表共有的测试用例数。
接下去T行每行代表一个测试用例,每个测试用例有如下两种类型
1.1 n。输出层次遍历中,第n个数字。
2.2 p q。输出p/q在层次遍历中的顺序。
1 ≤ n, p, q ≤ 2^64-1
-
输出:
-
对于每个测试用例,若其类型为1,输出两个整数p q,代表层次遍历中第n个数字为p/q。
若其类型为2,输出一个整数n,代表整数p/q在层次遍历的中的顺序n。
数据保证输出在[1,2^64-1]范围内。
-
样例输入:
-
4 1 2 2 1 2 1 5 2 3 2
-
样例输出:
-
1 2 2 3 2 5
刚开始一直在想有什么规律,结果想半天看不出有什么规律,最后看别人提示,突破口在与隐含的完全二叉树这个条件。。。
对于给定的N或在 p/q,都能找到它到根的这么一条路径,有了这条路径就好做了。
所以复杂度是O(logN)的。
#include<iostream> #include<cstdio> #include<vector> #include<string> #include<cstring> #include<climits> #include<algorithm> using namespace std; void calNth(int n,int& p,int& q) { vector<int> path; while(n!=1) { path.push_back(n%2); n>>=1; } p=1,q=1; for(int i=path.size()-1;i>=0;i--) { int t=p+q; if(path[i]) p=t; else q=t; } } int solve(int p,int q) { vector<int> path; while(p!=1||q!=1) { if(p>q) { path.push_back(1); p=p-q; } else { path.push_back(0); q=q-p; } } int cnt=0; int k=1,n=1; for(int i=path.size()-1;i>=0;i--) { cnt+=n; n<<=1; k=(k-1)*2+1+path[i]; } cnt+=k; return cnt; } int main() { int t; while(scanf("%d",&t)!=EOF) { int type=0; scanf("%d",&type); if(type==1) { int n; scanf("%d",&n); int p,q; calNth(n,p,q); printf("%d %d\n",p,q); } else { int p,q; scanf("%d%d",&p,&q); int n=solve(p,q); printf("%d\n",n); } } }