动态规划解矩阵链乘法

题目描述

用加括号的方式给出最优的矩阵相乘方案

输入

第一行一个整数 n,表示矩阵链的长度(1<=n<=300)

接下来一行n+1个数表示这些矩阵的行数和列数

n+1个数中,每相邻的两个数表示一个矩阵的大小

输出

对于每组数据,输出两行,第一行为计算次数,第二行为计算方案,用加括号的方式给出最优的矩阵相乘方案

如果不幸最优方案不唯一,选择优先计算左边的矩阵

输入样例

3
10 20 5 4

输出样例

1200
((A1A2)A3)

代码实现

# include <bits/stdc++.h>
using namespace std;
# define maxn 1005000
long long a[maxn];
long long s[1000][1000];
long long dp[1000][1000], dp1[maxn];
void print(long long s[1000][1000], int i, int j){ //输出函数 
    if(i == j)
        printf("A%d", i);
    else{
        printf("(");
        print(s, i, s[i][j]);
        print(s, s[i][j] + 1, j);
        printf(")");
    }
}
int main() {
    long long n, x, count, j, q;
    cin >> n; 
    for(int i = 0; i <= n; i++) // 第i个矩阵的行列为a[i-1]与a[i] 
        cin >> a[i]; //(接上)i为1到n 
    for(int i = 1; i <= n; i++)    
        dp[i][i] = 0; //dp[i][j]表示i到j矩阵相乘最少要多少次 ,最终所得为dp[1][n] 
    for(int l = 2; l <= n; l++){ // 取矩阵长度为2到n 
        for(int i = 1; i <= n - l + 1; i++){
            j = i + l - 1;
            dp[i][j] = 999999999;
            for(int k = i; k <= j - 1; k++){
                q = dp[i][k] + dp[k + 1][j] + a[i - 1] * a[k] * a[j]; //自底向上找最少次数 
                if(q <= dp[i][j]){
                    dp[i][j] = q;
                    s[i][j] = k;
                }
            }
        }
    }
    cout << dp[1][n] << endl;
    print(s, 1, n);
    cout << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值