题目描述
用加括号的方式给出最优的矩阵相乘方案
输入
第一行一个整数 n,表示矩阵链的长度(1<=n<=300)
接下来一行n+1个数表示这些矩阵的行数和列数
n+1个数中,每相邻的两个数表示一个矩阵的大小
输出
对于每组数据,输出两行,第一行为计算次数,第二行为计算方案,用加括号的方式给出最优的矩阵相乘方案
如果不幸最优方案不唯一,选择优先计算左边的矩阵
输入样例
3
10 20 5 4
输出样例
1200
((A1A2)A3)
代码实现
# include <bits/stdc++.h>
using namespace std;
# define maxn 1005000
long long a[maxn];
long long s[1000][1000];
long long dp[1000][1000], dp1[maxn];
void print(long long s[1000][1000], int i, int j){ //输出函数
if(i == j)
printf("A%d", i);
else{
printf("(");
print(s, i, s[i][j]);
print(s, s[i][j] + 1, j);
printf(")");
}
}
int main() {
long long n, x, count, j, q;
cin >> n;
for(int i = 0; i <= n; i++) // 第i个矩阵的行列为a[i-1]与a[i]
cin >> a[i]; //(接上)i为1到n
for(int i = 1; i <= n; i++)
dp[i][i] = 0; //dp[i][j]表示i到j矩阵相乘最少要多少次 ,最终所得为dp[1][n]
for(int l = 2; l <= n; l++){ // 取矩阵长度为2到n
for(int i = 1; i <= n - l + 1; i++){
j = i + l - 1;
dp[i][j] = 999999999;
for(int k = i; k <= j - 1; k++){
q = dp[i][k] + dp[k + 1][j] + a[i - 1] * a[k] * a[j]; //自底向上找最少次数
if(q <= dp[i][j]){
dp[i][j] = q;
s[i][j] = k;
}
}
}
}
cout << dp[1][n] << endl;
print(s, 1, n);
cout << endl;
return 0;
}