动态规划经典题目-矩阵链乘法

本文介绍如何使用动态规划解决给定矩阵连乘问题,通过定义状态、状态转移方程并运用自底向上的计算方法,找到使计算量最小的加括号策略。实例分析了矩阵A1到An的计算过程,并提供了代码实现及执行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、题目描述

​ 给定n个矩阵{A1,A2,A3,…,An},其中,Ai和Ai+1(i=1,2,…,n-1)是可乘的。用括号的方法表示矩阵连乘的次序,不同的计算次序计算量(乘法次数)是不同,找出一种加括号的方法,使得矩阵连乘的计算量最小。

​ 设两个矩阵Mixj、Mjxp相乘运算次数则为i x j x p。

示例:

​ A1是M5x10的矩阵;

​ A2是M5x100的矩阵;

​ A3是M100x2的矩阵;

​ 那么有两种加括号的方法:

​ (1) (A1A2)A3;

​ (2) A1(A2A3);

​ 第一种加括号方法运算量:5 x 10 x100 + 5 x 100 x 2 = 6000;

​ 第二种加括号方法运算量:10x 100 x2 + 5 x 10 x 2 = 2100;

二、解题思路

​ 设输入矩阵如下表格:

矩阵A1A2A3A4A5
规模3 x 55 x 1010 x 88 x 22 x 4

​ 转化为数组P表示为:

P[0]P[1]P[2]P[3]P[4]P[5]
3510824

所以P[0]和P[1]表示A1,P[1]和[2]表示A2以此类推即可。

1. 定义状态

​ 设dp[i][j]表示Ai到Aj所需要最小计算量,i和j从1开始计数,那么我们最终要求出的是dp[1][P.length -1]即为矩阵A1到An的最小计算量,其中n = P.length -1;

​ 我么可以对dp[i][j]进行拆分,如果i和j满足j - i >= 1时,则i和j中间必有一点k,即k表示矩阵Ak。可以从Ak进行拆分两个序列(Ai到Ak)和(Ak+1到Aj),两个序列乘法最少的计算量分别为dp[i][k]和dp[k+1][j]。两个子序列矩阵合并后计算量为P[i-1] x P[K] x P[j]。所以dp[i][j] = dp[i][k] + dp[k+1][j] + P[i-1] x P[K] x P[j],当然位置k可能有多个,我们取最小花费那个。

2. 定义状态转移方程

当j - i <= 0时,有

d p [ i ] [ j ] = 0 dp[i][j] = 0 dp[i][j]=0

否则

d p [ i ] [ j ] = m a x ( d p [ i ] [ k ] + d p [ k ] [ j ] + P [ i − 1 ] × P [ k ] × P [ j ] ) , i ≤ k < j dp[i][j] = max( dp[i][k] + dp[k][j] + P[i-1] \times P[k] \times P[j]), i \leq k < j dp[i][j]=max(dp[i][k]+dp[k][j]+P[i1]×P[k]×P[j]),ik<j

3. 初始化

​ 当j - i <= 0时,有 d p [ i ] [ j ] = 0 dp[i][j] = 0 dp[i][j]=0

4. 计算方式

​ 自底向上,自左向右计算。这里解释下是指dp二维表自底向上是指i从大往小计算,自左向右计算是指j从小到大计算。

三、代码实现

/**
 * 最小矩阵乘法运算数量
 *
 * @author hh
 * @date 2021-5-18 23:32
 */
public class MinMatrixChain {

    public int minCalcCount(int[] matrix, int[][] trace) {
        if (matrix.length < 3) {
            throw new IllegalArgumentException("非法参数");
        }
        int[][] dp = new int[matrix.length][matrix.length];
        for (int i = matrix.length - 1; i >= 1; i--) {
            for (int j = 1; j <= matrix.length-1; j++) {
                if (j - i == 0) {
                    dp[i][j] = 0;
                    continue;
                }
                dp[i][j] = Integer.MAX_VALUE;
                for (int k = i; k < j; k++) {
                    int temp = dp[i][k] + dp[k+1][j] + matrix[i - 1] * matrix[k] * matrix[j];
                    if (temp < dp[i][j]) {
                        dp[i][j] = temp;
                        trace[i][j] = k;
                    }
                }
            }
        }
        return dp[1][matrix.length-1];
    }

    public void print(int[] matrix, int[][] trace, int startIndex, int endIndex) {
        if (endIndex - startIndex <= 0) {
            System.out.print("A" + startIndex + " ");
        } else {
            System.out.print("(");
            print(matrix, trace, startIndex, trace[startIndex][endIndex]);
            print(matrix, trace, trace[startIndex][endIndex] + 1, endIndex);
            System.out.print(")");
        }
    }

    public static void main(String[] args) {
        int[] matrix = new int[]{3, 5, 10, 8, 2, 4};
        int[][] trace = new int[matrix.length][matrix.length];
        MinMatrixChain minMatrixChain = new MinMatrixChain();
        System.out.println(minMatrixChain.minCalcCount(matrix, trace));
        minMatrixChain.print(matrix, trace, 1, matrix.length-1);
    }
}

四、执行结果

在这里插入图片描述

五、思考

​ 本题和字符串切分的做法非常相似,都是对dp数组进行线性划分,读者有时间可以看我的另一篇文章动态规划经典题目-字符串切分,进行举一反三。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值