【Markdown 2】LaTeX插入数学公式(摘要总结)

一 第一篇

1 LaTeX 编辑数学公式基本语法元素

数学公式有两种形式: inline 和 display

  • inline(行间公式):在正文插入数学公式,用$...$ 将公式括起来

  • display(快间公式) :独立排列的公式,用 $$...$$将公式括起来,默认显示在行中间

  • 各类希腊字母表:

    eg:

    `` : $$

    $\alpha$ : α \alpha α

    $\beta$ : β \beta β

    $\gamma$ : γ \gamma γ

在这里插入图片描述

2 上下标、根号、省略号

  • 下标:_ eg: x_i : x i x_i xi

  • 上标:^ eg: x^2 : x 2 x^2 x2

    注意:上下标如果多于一个字母或者符号,需要用一对{}括起来 eg: x_{i1} : x i 1 x_{i1} xi1 x^{at} : x a t x^{at} xat

  • 根号:\sqrt eg: \sqrt [n]{5} : 5 n \sqrt[n]{5} n5

  • 省略号:\dots \cdots 分别表示 … eg:\dots : … \dots

3 运算符

基本运算符: \pm : ± \pm ±

\div : ÷ \div ÷

  • 求和: \sum _1^n : ∑ 1 n \sum_1^n 1n

  • 积分:\int _1^n : ∫ 1 n \int_1^n 1n

  • 极限:lim _{x \to \infty} : l i m x → ∞ lim _{x \to \infty} limx

  • 分数:\frac {3}{8} : 3 8 \frac{3}{8} 83

  • 矩阵与行列式

    矩阵$$\begin{matrix}...\end{matrix}$$

    ​ 使用&分隔同行元素,\ 换行。

    $$
    	\begin{matrix}
    	
    		1 & x & x^2\\
    		1 & y & y^2\\
    		1 & z & z^2\\
    	
    	\end{matrix}
    $$
    

    1 x x 2 1 y y 2 1 z z 2 \begin{matrix} 1 & x & x^2\\ 1 & y & y^2\\ 1 & z & z^2\\ \end{matrix} 111xyzx2y2z2

    行列式

    $$
    X=
    \left|
    	\begin{matrix}
    	
    		x_{11} & x_{12} & \cdots & x_{1d}\\
    		x_{21} & x_{22} & \cdots & x_{2d}\\
    		\vdots & \vdots & \ddots & \vdots \\
    		x_{11} & x_{12} & \cdots & x_{1d}\\
    		
    	\end{matrix}
    \right|
    $$
    

    X = ∣ x 11 x 12 ⋯ x 1 d x 21 x 22 ⋯ x 2 d ⋮ ⋮ ⋱ ⋮ x 11 x 12 ⋯ x 1 d ∣ X=\left| \begin{matrix} x_{11} & x_{12} & \cdots & x_{1d}\\ x_{21} & x_{22} & \cdots & x_{2d}\\ \vdots & \vdots & \ddots & \vdots \\ x_{11} & x_{12} & \cdots & x_{1d}\\ \end{matrix} \right| X=x11x21x11x12x22x12x1dx2dx1d

  • 分隔符

    各种括号用 () [] { } \langle \rangle 等命令表示

    注意花括号通常用来输入命令和环境的参数,所以在数学公式中它们前面要加 \。

    可以在上述分隔符前面加 \big \Big \bigg \Bigg 等命令来调整大小。

  • 箭头

    $\leftarrow$ : ← \leftarrow

    $\rightarrow$ : → \rightarrow

    $\leftrightarrow$ : ↔ \leftrightarrow

    $\Leftarrow$ : ⇐ \Leftarrow

    $\Rightarrow$ : ⇒ \Rightarrow

    $\Leftrightarrow$ : ⇔ \Leftrightarrow

    在这里插入图片描述

  • 方程式

    E=mc^2 : E = m c 2 E=mc^2 E=mc2

  • 分段函数

    $$
    f(n)=
    	\begin{cases}
    	
    		n/2, & \text{if $n$ is even}\\
    		3n+1,& \text{if $n$ is odd}
    		
    	\end{cases}
    $$
    

    f ( n ) = { n / 2 , if  n  is even 3 n + 1 , if  n  is odd f(n)= \begin{cases} n/2, & \text{if $n$ is even}\\ 3n+1,& \text{if $n$ is odd} \end{cases} f(n)={n/2,3n+1,if n is evenif n is odd

  • 方程组

    $$
    \left\{
    	\begin{array}{c}
    	
    		a_1x+b_1y+c_1z=d_1\\
    		a_2x+b_2y+c_2z=d_2\\
    		a_3x+b_3y+c_3z=d_3
    		
    	\end{array}
    \right.
    $$
    

    { a 1 x + b 1 y + c 1 z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 3 x + b 3 y + c 3 z = d 3 \left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1\\ a_2x+b_2y+c_2z=d_2\\ a_3x+b_3y+c_3z=d_3 \end{array} \right. a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3

4 常用公式

  • 线性模型

    $$
    	h(\theta) = \sum_{j=0} ^n \theta_j x_j
    $$
    

h ( θ ) = ∑ j = 0 n θ j x j h(\theta) = \sum_{j=0} ^n \theta_j x_j h(θ)=j=0nθjxj

  • 均方误差

    $$
    	J(\theta) = \frac{1}{2m}\sum_{i=0}^m(y^i - h_\theta(x^i))^2
    $$
    

J ( θ ) = 1 2 m ∑ i = 0 m ( y i − h θ ( x i ) ) 2 J(\theta) = \frac{1}{2m}\sum_{i=0}^m(y^i - h_\theta(x^i))^2 J(θ)=2m1i=0m(yihθ(xi))2

  • 求积公式

    $$
    	H_c=\sum_{l_1+\dots +l_p}\prod^p_{i=1} \binom{n_i}{l_i}
    $$
    

H c = ∑ l 1 + ⋯ + l p ∏ i = 1 p ( n i l i ) H_c=\sum_{l_1+\dots +l_p}\prod^p_{i=1} \binom{n_i}{l_i} Hc=l1++lpi=1p(lini)

  • 批量梯度下降

    $$
    	\frac{\partial J(\theta)}{\partial\theta_j} = -\frac1m\sum_{i=0}^m(y^i - 	h_\theta(x^i))x^i_j
    $$
    

    ∂ J ( θ ) ∂ θ j = − 1 m ∑ i = 0 m ( y i − h θ ( x i ) ) x j i \frac{\partial J(\theta)}{\partial\theta_j} = -\frac1m\sum_{i=0}^m(y^i - h_\theta(x^i))x^i_j θjJ(θ)=m1i=0m(yihθ(xi))xji

  • 推导过程

    $$
    \begin{align}
    	\frac{\partial J(\theta)}{\partial\theta_j}
    	& = -\frac1m\sum_{i=0}^m(y^i - h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i))\\
    	& = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_j x^i_j-y^i)\\
    	&=-\frac1m\sum_{i=0}^m(y^i -h_\theta(x^i)) x^i_j
    \end{align}
    $$
    

KaTeX parse error: No such environment: align at position 10: \begin{̲a̲l̲i̲g̲n̲}̲ \frac{\part…

5 字符下标

$$
\max \limits_{a<x<b}\{f(x)\}	
$$

max ⁡ a < x < b { f ( x ) } \max \limits_{a<x<b}\{f(x)\} a<x<bmax{f(x)}

二 第二篇

1 基本语法

正文中 使用$ ...$
行间 使用$$...$$

2 希腊字母

显示命令显示命令
α\alphaβ\beta
γ\gammaδ\delta
ε\epsilonζ\zeta
η\etaθ\theta
ι\iotaκ\kappa
λ\lambdaμ\mu
ν\nuξ\xi
π\piρ\rho
σ\sigmaτ\tau
υ\upsilonφ\phi
χ\chiψ\psi
ω\omega
  • 若需要大写希腊字母,将命令首字母大写即可。
    \Gamma呈现为 Γ \Gamma Γ

    \gamma呈现为 γ \gamma γ

  • 若需要斜体希腊字母,将命令前加上var前缀即可。

    \varGamma呈现为 Γ \varGamma Γ

3 字母修饰

3.1 上下标

  • 上标:^
  • 下标:_

3.2 矢量

  • \vec a a ⃗ \vec a a
  • \vec {ab} a b ⃗ \vec {ab} ab
  • \overrightarrow{xy} x y → \overrightarrow{xy} xy
  • \overleftarrow{xy} x y ← \overleftarrow{xy} xy

3.3 字体

  • Typewriter:\mathtt{A} A \mathtt{A} A

    A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ

  • Blackboard Bold:\mathbb{A} A \mathbb{A} A

    A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ

  • Sans Serif:\mathsf{A} A \mathsf{A} A

    A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ

3.4 分组

  • 使用{}将具有相同等级的内容扩入其中,成组处理

    10^{1+1+1} 1 0 1 + 1 + 1 10^{1+1+1} 101+1+1

3.5 括号

  • 小括号:() ( a + b ) (a+b) (a+b)
  • 中括号:[] [ a + b ] [a+b] [a+b]
  • 尖括号:\langle,\rangle ⟨ a + b ⟩ \langle a+b \rangle a+b
  • 使用\left(\right)使符号大小与邻近的公式相适应
    • (\frac{x}{y}) ( x y ) (\frac{x}{y}) (yx)
    • \left(\frac{x}{y}\right) ( x y ) \left(\frac{x}{y}\right) (yx)

3.6 求和、极限和积分

  • 求和

    • \sum

    • \sum _{i=1} ^{n} {a_i} ∑ i = 1 n a i \sum _{i=1} ^{n} {a_i} i=1nai

  • 极限

    • \lim

    • \lim _{x\to 0} lim ⁡ x → 0 \lim _{x\to 0} limx0

  • 积分

    • \int
    • \int _0 ^\infty {f(x)dx} ∫ 0 ∞ f ( x ) d x \int_0^\infty{f(x)dx} 0f(x)dx

3.7 分式与根式

  • 分式

    • \frac

    • \frac{公式1}{公式2} 公 式 1 公 式 2 \frac{公式1}{公式2} 21

  • 根式

    • \sqrt
    • \sqrt[x]{y} y x \sqrt[x]{y} xy

3.8 特殊函数

  • \函数名
    • \sin x sin ⁡ x \sin x sinx
    • \ln x ln ⁡ x \ln x lnx
    • \max(A,B,C) max ⁡ ( A , B , C ) \max(A,B,C) max(A,B,C)

3.9 特殊符号

显示代码显示代码
\infty\varnothing
\cup\forall
\cap\exists
\subset¬\lnot
\subseteq\nabla
\supset\partial
$\in $\in\notin

3.10 空格

  • Latex语法本身会忽略空格的存在
  • 小空格:a\ b a   b a\ b a b
  • 4格空格:a\quad b a b a\quad b ab

4 矩阵

4.1 基本语法

  • 起始标记\begin{matrix}
  • 结束标记\end{matrix}
  • 每一行末尾标记\\
  • 行间元素之间以&分隔

4.2 矩阵边框

  • 在起始、结束标记处用下列词替换 matrix
  • pmatrix :小括号边框
  • bmatrix :中括号边框
  • Bmatrix :大括号边框
  • vmatrix :单竖线边框
  • Vmatrix :双竖线边框

Eg

$$
	\begin{matrix}
		1 & 0 & 0\\
		0 & 1 & 0\\
		0 & 0 & 1\\
	\end{matrix}
$$

1 0 0 0 1 0 0 0 1 ( 1 0 0 0 1 0 0 0 1 ) [ 1 0 0 0 1 0 0 0 1 ] { 1 0 0 0 1 0 0 0 1 } ∣ 1 0 0 0 1 0 0 0 1 ∣ ∥ 1 0 0 0 1 0 0 0 1 ∥ \begin{matrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ \end{matrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ \end{pmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ \end{bmatrix} \begin{Bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ \end{Bmatrix} \begin{vmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ \end{vmatrix} \begin{Vmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ \end{Vmatrix} 100010001100010001100010001100010001100010001100010001

4.3 省略元素

  • 横省略号:\cdots
  • 竖省略号:\vdots
  • 斜省略号:\ddots

Eg:

$$
	\begin{bmatrix}
		{a_{11}} & {a_{12}} & {\cdots} & {a_{1n}}\\
		{a_{21}} & {a_{22}} & {\cdots} & {a_{2n}}\\
		{\vdots} & {\vdots} & {\ddots} & {\vdots}\\
		{a_{m1}} & {a_{m2}} & {\cdots} & {a_{mn}}\\
	\end{bmatrix}
$$

[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] \begin{bmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\ \end{bmatrix} a11a21am1a12a22am2a1na2namn

5 阵列

  • 需要array环境:起始、结束处以{array}声明
  • 对齐方式: 在{array}后以{}逐行声明
    • 左对齐:l
    • 居中:c
    • 右对齐:r
    • 竖直线:在声明对齐方式时,插入|建立竖直线
  • 插入水平线: \hline

Eg:

$$
	\begin{array}
		{c|lll}
		{↓}   & {a} & {b} & {c}\\
		\hline
		{R_1} & {c} & {b} & {a}\\
		{R_2} & {b} & {c} & {c}\\
	\end{array}
$$

↓ a b c R 1 c b a R 2 b c c \begin{array}{c|lll} {↓}&{a}&{b}&{c}\\ \hline {R_1}&{c}&{b}&{a}\\ {R_2}&{b}&{c}&{c}\\ \end{array} R1R2acbbbccac

6 方程组

  • 需要cases环境:起始、结束处以{cases}声明

Eg:

$$
	\begin{cases}
		a_1x + b_1y + c_1z = d_1\\
		a_2x + b_2y + c_2z = d_2\\
		a_3x + b_3y + c_3z = d_3\\
	\end{cases}
$$

{ a 1 x + b 1 y + c 1 z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 3 x + b 3 y + c 3 z = d 3 \begin{cases} a_1x+b_1y+c_1z=d_1\\ a_2x+b_2y+c_2z=d_2\\ a_3x+b_3y+c_3z=d_3\\ \end{cases} a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3

深入了解

MathJax Tutorial.

参考文章

Typora中利用LaTeX 插入数学公式

Typora使用技巧_插入Latex公式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值