MapReduce性能优化秘籍

1. MapReduce跑的慢的原因

MapReduce 程序效率的瓶颈在于两点:

  1. 计算机性能
    CPU、内存、磁盘、网络
  2. I/O 操作
    1. 数据倾斜
    2. map 和 reduce 数设置不合理
    3. map 运行时间太长,导致 reduce 等待过久
    4. 小文件过多
    5. 大量的不可分块的超大文件(例:通过 gzip 压缩后的文件)
    6. spill(溢写)次数过多
    7. merge(map 端合并或 reduce 端合并)次数过多

2. MapReduce优化方法

MapReduce 优化方法主要从六个方面考虑:数据输入、Map 阶段、Reduce 阶段、IO 传输、数据倾斜问题和常用的调优参数。

2.1. 数据输入
  • 合并小文件:在执行 mr 任务前将小文件进行合并,大量的小文件会产生大量的 map 任务,增大 map 任务装载次数,而任务的装载比较耗时,从而导致 mr 运行较慢。
  • 采用 CombineTextInputFormat 来作为输入,解决输入端大量小文件的场景。
2.2. Map阶段
  • 减少溢写(spill)次数:通过调整 io.sort.mb增大环形缓冲区的大小;调整 sort.spill.percent减少溢写的频率,从而减少磁盘IO。
  • 减少合并(merge)次数:通过调整 io.sort.factor参数,增大触发合并的文件数目,减少合并的次数,从而缩短 mr 处理时间。
  • 在不影响业务逻辑的前提下,先使用 Combiner 在 map 端进行一次合并,减少 I/O。
2.3. Reduce阶段
  • 合理设置 map 和 reduce 的个数:两个都不能设置太少,也不能设置太多。太少,会导致 task 等待,延长处理时间;太多,会导致 map、reduce 任务间竞争资源,造成处理超时等错误。
  • 设置 map、reduce 共存:调整 slowstart.completedmaps参数,使 map 运行到一定程度后,reduce 也开始运行,减少 reduce 的等待时间。
  • 规避使用 reduce:因为 reduce 阶段会通过网络去下载 map 运行的结果复制到 reduce 节点,造成大量的网络消耗。
  • 合理设置 reduce 端的 buffer:默认情况下,从 map 端传输到 reduce 端放到 buffer 中的数据达到一个阙值的时候,buffer中的数据就会写入磁盘,然后 reduce 会从磁盘中获得所有的数据。也就是说,buffer 和 reduce 是没有直接关联的,中间多一个写磁盘读磁盘的过程,既然有这个弊端,那么就可以通过参数来配置,使得 buffer 中的一部分数据可以直接输送到 reduce,从而减少 IO 开销:mapred.job.reduce.input.buffer.percent,默认为 0.0 。当值大于 0 的时候,会保留指定比例的内存读 buffer 中的数据直接拿给 reduce 使用。这样一来,设置 buffer 需要内存,读取数据需要内存,reduce 计算也要内存,所以要根据作业的运行情况进行调整。
2.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值