1. MapReduce跑的慢的原因
MapReduce 程序效率的瓶颈在于两点:
- 计算机性能
CPU、内存、磁盘、网络 - I/O 操作
- 数据倾斜
- map 和 reduce 数设置不合理
- map 运行时间太长,导致 reduce 等待过久
- 小文件过多
- 大量的不可分块的超大文件(例:通过 gzip 压缩后的文件)
- spill(溢写)次数过多
- merge(map 端合并或 reduce 端合并)次数过多
2. MapReduce优化方法
MapReduce 优化方法主要从六个方面考虑:数据输入、Map 阶段、Reduce 阶段、IO 传输、数据倾斜问题和常用的调优参数。
2.1. 数据输入
- 合并小文件:在执行 mr 任务前将小文件进行合并,大量的小文件会产生大量的 map 任务,增大 map 任务装载次数,而任务的装载比较耗时,从而导致 mr 运行较慢。
- 采用 CombineTextInputFormat 来作为输入,解决输入端大量小文件的场景。
2.2. Map阶段
- 减少溢写(spill)次数:通过调整
io.sort.mb
增大环形缓冲区的大小;调整sort.spill.percent
减少溢写的频率,从而减少磁盘IO。 - 减少合并(merge)次数:通过调整
io.sort.factor
参数,增大触发合并的文件数目,减少合并的次数,从而缩短 mr 处理时间。 - 在不影响业务逻辑的前提下,先使用 Combiner 在 map 端进行一次合并,减少 I/O。
2.3. Reduce阶段
- 合理设置 map 和 reduce 的个数:两个都不能设置太少,也不能设置太多。太少,会导致 task 等待,延长处理时间;太多,会导致 map、reduce 任务间竞争资源,造成处理超时等错误。
- 设置 map、reduce 共存:调整
slowstart.completedmaps
参数,使 map 运行到一定程度后,reduce 也开始运行,减少 reduce 的等待时间。 - 规避使用 reduce:因为 reduce 阶段会通过网络去下载 map 运行的结果复制到 reduce 节点,造成大量的网络消耗。
- 合理设置 reduce 端的 buffer:默认情况下,从 map 端传输到 reduce 端放到 buffer 中的数据达到一个阙值的时候,buffer中的数据就会写入磁盘,然后 reduce 会从磁盘中获得所有的数据。也就是说,buffer 和 reduce 是没有直接关联的,中间多一个写磁盘读磁盘的过程,既然有这个弊端,那么就可以通过参数来配置,使得 buffer 中的一部分数据可以直接输送到 reduce,从而减少 IO 开销:
mapred.job.reduce.input.buffer.percent
,默认为 0.0 。当值大于 0 的时候,会保留指定比例的内存读 buffer 中的数据直接拿给 reduce 使用。这样一来,设置 buffer 需要内存,读取数据需要内存,reduce 计算也要内存,所以要根据作业的运行情况进行调整。