目录
码字创作,感谢各位支持哦!
前言
何为计算机视觉?
计算机视觉是一门研究如何使机器“看”的科学,具体来说是利用摄像机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。它旨在建立能够从图像或者多维数据中获取“信息”的人工智能系统,这些信息可以用来帮助做出决策。
计算机视觉是人工智能领域的一个重要部分,它涉及图像处理技术、信号处理技术、概率统计分析、计算几何、神经网络、机器学习理论和计算机信息处理技术等多个方面。它的研究目标是使计算机具有通过二维图像认知三维环境信息的能力,使计算机能够达到人类那样的视觉感知能力,对目标进行分割、分类、识别、跟踪、判别决策。
在实际应用中,计算机视觉技术被广泛应用于多个领域。在工业制造中,它可用于产品质量检测和缺陷检测;在自动驾驶中,它用于感知道路环境和交通情况,帮助车辆实现自主导航和避障;在安防监控中,它用于实时监控和图像分析,识别异常行为、人脸和车牌等;在农业领域,它可用于农田监测和作物生长情况追踪;在零售与物流中,它可用于商品识别和库存管理。
此外,计算机视觉技术还在不断发展中,其未来趋势包括通过增强学习提升系统的适应性和灵活性,实现多模态融合以提高环境感知能力,与边缘计算结合以减少延迟和保护隐私,以及提升决策过程的可解释性和透明度等。

计算机视觉技术学习路线
基础知识
1. 数学基础
- 线性代数:矩阵运算、特征值与特征向量。
- 概率与统计:概率分布、统计推断、贝叶斯理论。
- 微积分:导数、积分。
2. 编程基础
- 编程语言:Python 是计算机视觉最常用的编程语言,也可以学习 C++。
- 基本编程概念:变量、数据类型、控制结构(条件语句、循环)、函数。
3. 图像处理基础
- 图像表示:灰度图、彩色图、图像通道。
- 图像操作:图像读取、保存、显示、基本的图像处理(平滑、锐化、边缘检测)。
基础算法与技术
1. 特征提取与描述符
- 边缘检测:Sobel、Canny 算子。
- 角点检测:Harris 角点检测、FAST 角点检测。
- 特征描述符:SIFT、SURF、ORB。
2. 图像分割与对象检测
- 阈值分割:全局阈值、自适应阈值。
- 边缘分割:基于边缘的分割算法。
- 对象检测:基于颜色、形状、纹理的对象检测。
3. 三维重建与立体视觉
- 基础几何:投影、变换。
- 深度估计:立体匹配、深度传感器。
- 三维重建:结构光、多视图几何。
机器学习与深度学习
1. 机器学习基础
- 监督学习:分类、回归、支持向量机(SVM)、决策树。
- 无监督学习:聚类、降维、主成分分析(PCA)。
2. 深度学习
- 基础神经网络:全连接神经网络、激活函数。
- 卷积神经网络(CNN):卷积层、池化层、全连接层。
- 迁移学习:使用预训练的模型进行特征提取和微调。

最低0.47元/天 解锁文章
1179

被折叠的 条评论
为什么被折叠?



