计算机视觉的入门系列,计算机视觉如何入门

本文介绍了计算机视觉的基础知识,如图片概念(深度、通道数等)、视频帧结构和摄像机类型,同时涵盖了CPU与GPU的性能差异以及CV与MachineVision、ImageProcessing的区别。重点突出了编程语言选择、知识储备和常用资源。
摘要由CSDN通过智能技术生成

注:原创不易,转载请务必注明原作者和出处,感谢支持!

一 写在开头

1.1 本文内容

本文内容为计算机视觉入门方法。

二 CV入门基础

2.1 基础知识

图片的相关概念:

维数

高度

宽度

深度

通道数

颜色格式

数据首地址

结束地址

2.2 相关概念解释

图像的深度:存储每个像素所用的位数,比如常见的8位、16位和24位等。

图像的压缩格式:常见的图像压缩格式有JPG、PNG和TIF等。

图像的通道数:常见的有灰度图(单通道)、RGBA(四通道,其中A指透明度)、YUV和YUYV等。

视频的相关概念:

原始视频 = 图片序列。视频中的每张有序图片称为“帧”(frame)。压缩后的视频会采用各种算法来减少数据的容量,其中IPB就是常见的压缩方式。

I帧表示关键帧,其包含了完整的一幅画面。

P帧表示差别帧,其表示的是当前帧与上一个关键帧I(或P帧)的差别,解码该帧时要用之前缓存的画面叠加上本帧定义的差别,生成最终画面。

B帧表示双向差别帧,也就是说,B帧记录的是本帧与前后帧的差别。换言之,要解码B帧,不仅要取得之前缓存的画面,还要解码之后的画面,通过前后画面与本帧数据的叠加取得最终画面。

码率:单位时间内传输的数据数。码率越大,视频体积越大。

帧率:每秒传输的帧数。

分辨率:每一帧图像的分辨率。

2.3 摄像机的分类

graph LR;

摄像机-->监控摄像机;

摄像机-->不同行业需求摄像机;

摄像机-->智能摄像机;

摄像机-->工业摄像机;

监控摄像机-->网络摄像机;

监控摄像机-->模拟摄像机;

不同行业需求摄像机-->超宽动态摄像机;

不同行业需求摄像机-->红外摄像机;

不同行业需求摄像机-->热成像摄像机;

2.4 CPU和GPU的差别

bbeafb1691ac25507fe8a18074df4218.png

从性能(低延时性)和吞吐量两方面来说,CPU属于高性能和低吞吐量,GPU属于低性能但高吞吐量。

从Cache和local memory的数量来看:CPU > GPU

从线程数(Threads)来看:GPU > CPU

从寄存器(Registers)数量来看:GPU > CPU

GPU以并行方式大量处理少量的简单运算,特别适合图像的处理。

2.5 Computer Vision和Machine Vision以及Image Processing的区别

Computer Vision:用在和应用场景相关的应用当中,偏软件

Machine Vision:更加偏重硬件

Image Porcessing:偏重于图像像素级别的处理

2.6 CV需要的知识储备和参考资料

编程语言

Python:多用于快速实现算法原型,除此之外还设计到常用的Python库,包括numpy和scipy等

C或C++:实际部署应用一般会用效率更高的编译型语言,比如C和C++。

数学基础:概率论、统计学、微积分、线性代数、机器学习

参考书和公开课

《Computer Vision : Models, Learning and Inference》

《Computer Vision : Algorithms and Applications》

《Multiple View Geometry in Computer Vision》(偏3D CV)

《Learning OpenCV》

Stanford CS223B:偏理论和基础

Stanford CS231N:卷积神经网络

Stanford CS223A:3D、重建等

网站

深度学习参考书

《Deep Learning》 Ian Goodfellow Yoshua Bengio Aaron Courville

2.7 CV相关开源软件

OpenCV

Caffe

TensorFlow

FFmpeg

2.8 如何阅读CV相关论文

先熟悉所研究方向的发展历程,发展历程中的里程碑式的文献需要精读

翻阅arXiv cs.CV,关注别人的最新工作

阅读论文务必搞清以下四个方面

论文解决了什么问题

用了什么方法

达到了怎样的效果

还存在什么问题待解决

附:

CV顶级期刊:PAMI、IJCV

CV顶级会议:ICCV、ECCV、CVPR、NIPS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值