(七步走写摘要): Multi-View Graph Clustering by Adaptive Manifold Learning

该论文提出了一个用于多视图图聚类的适应性流形模型,整合多个自适应图形成考虑流形拓扑结构的共识图。通过应用排名约束,确保图的连通组件对应于不同的聚类。实验显示,该方法在24个案例中的22个实现了最佳聚类性能,同时具有与最先进的算法相当或更快的计算效率。
摘要由CSDN通过智能技术生成

原摘要:

"Graph-oriented methods have been widely adopted in multi-view clustering because of their efficiency in learning heterogeneous relationships and complex structures hidden in data. However, existing methods are typically investigated based on a Euclidean structure instead of a more suitable manifold topological structure. Hence, it is expected that a more suitable manifold topological structure will be adopted to carry out intrinsic similarity learning. In this paper, we explore the implied adaptive manifold for multi-view graph clustering. Specifically, our model seamlessly integrates multiple adaptive graphs into a consensus graph with the manifold topological structure considered. We further manipulate the consensus graph with a useful rank constraint so that its connected components precisely correspond to distinct clusters. As a result, our model is able to directly achieve a discrete clustering result without any post-processing. In terms of the clustering results, our method achieves the best performance in 22 out of 24 cases in terms of four evaluation metrics on six datasets, which demonstrates the effectiveness of the proposed model. In terms of computational performance, our optimization algorithm is generally faster or in line with other state-of-the-art algorithms, which validates the efficiency of the proposed algorithm."

七步分如下:

交代背景: "Graph-oriented methods have been widely adopted in multi-view clustering because of their efficiency in learning heterogeneous relationships and complex structures hidden in data."

概括当前方法: "However, existing methods are typically investigated based on a Euclidean structure instead of a more suitable manifold topological structure."

现有方法的不足 : "Hence, it is expected that a more suitable manifold topological structure will be adopted to carry out intrinsic similarity learning."

提出当前的方法: "In this paper, we explore the implied adaptive manifold for multi-view graph clustering."

简要介绍方法: "Specifically, our model seamlessly integrates multiple adaptive graphs into a consensus graph with the manifold topological structure considered. We further manipulate the consensus graph with a useful rank constraint so that its connected components precisely correspond to distinct clusters."

如何实现: "We further manipulate the consensus graph with a useful rank constraint so that its connected components precisely correspond to distinct clusters."

实验介绍: "In terms of the clustering results, our method achieves the best performance in 22 out of 24 cases in terms of four evaluation metrics on six datasets, which demonstrates the effectiveness of the proposed model. In terms of computational performance, our optimization algorithm is generally faster or in line with other state-of-the-art algorithms, which validates the efficiency of the proposed algorithm."

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值