原摘要:
"Graph-oriented methods have been widely adopted in multi-view clustering because of their efficiency in learning heterogeneous relationships and complex structures hidden in data. However, existing methods are typically investigated based on a Euclidean structure instead of a more suitable manifold topological structure. Hence, it is expected that a more suitable manifold topological structure will be adopted to carry out intrinsic similarity learning. In this paper, we explore the implied adaptive manifold for multi-view graph clustering. Specifically, our model seamlessly integrates multiple adaptive graphs into a consensus graph with the manifold topological structure considered. We further manipulate the consensus graph with a useful rank constraint so that its connected components precisely correspond to distinct clusters. As a result, our model is able to directly achieve a discrete clustering result without any post-processing. In terms of the clustering results, our method achieves the best performance in 22 out of 24 cases in terms of four evaluation metrics on six datasets, which demonstrates the effectiveness of the proposed model. In terms of computational performance, our optimization algorithm is generally faster or in line with other state-of-the-art algorithms, which validates the efficiency of the proposed algorithm."
七步分如下:
交代背景: "Graph-oriented methods have been widely adopted in multi-view clustering because of their efficiency in learning heterogeneous relationships and complex structures hidden in data."
概括当前方法: "However, existing methods are typically investigated based on a Euclidean structure instead of a more suitable manifold topological structure."
现有方法的不足 : "Hence, it is expected that a more suitable manifold topological structure will be adopted to carry out intrinsic similarity learning."
提出当前的方法: "In this paper, we explore the implied adaptive manifold for multi-view graph clustering."
简要介绍方法: "Specifically, our model seamlessly integrates multiple adaptive graphs into a consensus graph with the manifold topological structure considered. We further manipulate the consensus graph with a useful rank constraint so that its connected components precisely correspond to distinct clusters."
如何实现: "We further manipulate the consensus graph with a useful rank constraint so that its connected components precisely correspond to distinct clusters."
实验介绍: "In terms of the clustering results, our method achieves the best performance in 22 out of 24 cases in terms of four evaluation metrics on six datasets, which demonstrates the effectiveness of the proposed model. In terms of computational performance, our optimization algorithm is generally faster or in line with other state-of-the-art algorithms, which validates the efficiency of the proposed algorithm."