- 博客(30)
- 资源 (6)
- 收藏
- 关注
原创 ADB(Android Debug Bridge)详细下载安装及使用教程
ADB是每位Android开发者和测试人员的宝贵工具。掌握ADB的使用,可以极大提高开发和调试的效率。本教程旨在帮助您快速入门ADB的下载安装及基本使用,希望能助您一臂之力。随着对ADB更深入的学习和实践,您将发现其更多强大功能,为您的Android开发之路添砖加瓦。
2024-03-04 15:29:48 14311 1
原创 (七步走写摘要): UserInformation bottleneck fusion for deep multi-view clustering
本研究提出了一种基于信息瓶颈理论的深度多视图聚类新模型(IBFDMVC),该模型通过在两个独特的特征空间上操作并以并行方式重构语义信息来解决传统多视图聚类方法中特征选择不足和忽略数据噪声的问题。通过采用对比学习和信息瓶颈理论相结合的融合模块,IBFDMVC有效地增强了数据表示并减少了表示噪声,最终通过k-means聚类模块完成聚类任务。
2024-03-04 14:29:45 912
原创 (七步走写摘要): Self Supervised Correlation-based Permutations for Multi-View Clustering
本研究成功提出并验证了一个新的多视图聚类框架,该框架基于深度学习,适用于广泛的数据类型。通过采用基于排列的典型相关目标和多视图伪标签一致性学习,该框架能够有效地学习数据的融合表示和聚类分配。在十个MVC基准数据集上的实验结果证明了该模型的有效性,理论分析也表明该模型能够近似于监督式线性判别分析表示,并提供了由错误伪标签注释引起的误差界限。这项工作为多视图数据分析提供了一种高效、灵活的新途径,有望推动对银河系等复杂系统的理解和研究。
2024-03-04 14:26:40 597
原创 在CentOS上使用Gunicorn和systemd完整部署Flask应用:详细指南
在这篇博客中,我们将详细介绍如何在CentOS系统上使用Flask、Gunicorn和systemd组合部署一个Web应用。这个流程包括从创建一个基本的Flask应用开始,到通过Gunicorn运行应用,再到使用systemd管理应用的生命周期,确保它能够在系统重启后自动启动,以及提供了方便的日志查看和服务状态监控的功能。
2024-03-04 14:05:55 1194
原创 MySQL中的变量使用入门
用户定义变量是最常用的一种变量类型,它们以符号开头,无需声明类型,作用域为整个会话期间,直到会话结束。了解并掌握如何在MySQL中使用用户定义变量和局部变量,对于编写高效且可维护的SQL脚本至关重要。希望本文的介绍能帮助你更好地理解和应用MySQL中的变量,从而提升你的数据库操作能力。
2024-03-04 13:35:09 487
原创 编程|Python单例模式的几种实现方式
以上就是三种常见的Python单例模式实现方式。单例模式在某些场景下非常有用,特别是在需要保证全局唯一性的情况下。开发人员应当根据具体需求选择合适的实现方式,以确保程序的性能和资源的有效利用。
2023-07-28 17:02:39 463
原创 运维|实现实时文件同步到远程服务器的Python脚本
通过本篇博客,我们学习了如何使用Python编写一个实现文件实时同步的脚本。该脚本结合watchdog和paramiko库,能够自动地将本地文件同步到远程服务器,并进行md5校验。在使用过程中,可以通过修改配置文件来灵活调整脚本的行为。虽然脚本已经能够满足文件实时同步的需求,但仍有一些改进的空间。例如,可以添加更多的异常处理,提高脚本的稳定性;或者优化同步算法,减少传输的时间和带宽占用。通过持续的优化和改进,这个脚本将会变得更加完善和实用。
2023-07-28 16:51:49 2029
原创 7步走写摘要:Unsupervised Galaxy Morphological Visual Representation with Deep Contrastive Learning
交叉验证的实验表明,我们的模型在应用到新的数据集时具有迁移和泛化的能力。一般的摘要都会遵循这七个步骤,不同的步骤之间可能会融合到一块进行书写,在我们自己进行书写摘要的时候,可以参照这个步骤。翻译:考虑到银河图像的低语义信息和轮廓主导的属性,我们提出的方法的特征提取层整合了视觉变换器和卷积网络,通过融合多层次的特征来提供丰富的语义表示。翻译:在这篇论文中,我们提出了一种基于对比学习的方法,目标是只使用未标记的数据学习银河形态的视觉表示。第五步: 在提出论文的方法之后,需要进行对自己提出的方法的大致的介绍。
2023-07-26 23:42:13 135 1
原创 7步走写摘要:Tensorial Multi-View Clustering via Low-Rank Constrained High-Order Graph Learning
第一步: 交代背景:多视角数据的普遍性和重要性第二步: 概括当前方法。第三步: 一般介绍现有方法的不足第四步: 提出当前的方法第五步: 在提出论文的方法之后,需要进行对自己提出的方法的大致的介绍第六步: 第五步进行了理论上的阐述。这一步呢,通常是对提出的算法怎么样实现优化的一句话或者两句话。不能太长,因为有字数限制。第七步: 简要介绍一下实验,这个比较的套路。以上就是大致的一个流程,我也正在学习,若有不足请各位耐心支出。
2023-07-26 22:46:02 139 1
原创 (七步走写摘要): Consistent Multiple Graph Embedding for Multi-View Clustering
概括当前方法: "Although great efforts have been made for graph-based multi-view clustering, it remains a challenge to fuse characteristics from various views to learn a common representation for clustering."
2023-07-22 15:51:23 114
原创 (七步走写摘要): Multi-View Graph Clustering by Adaptive Manifold Learning
七步走写摘要
2023-07-22 15:49:11 116
原创 Cross-view Graph Contrastive Representation Learning on Partially Aligned Multi-view Data
Basic Information:Title: Cross-view Graph Contrastive Representation Learning on Partially Aligned Multi-view Data (基于交叉视图图形对齐学习的局部对齐多视图数据学习) Authors: Yiming Wang, Dongxia Chang, Zhiqiang Fu, Jie Wen, Yao Zhao Affiliation: Yiming Wang - Xiamen Universi
2023-04-01 15:31:02 246 1
原创 7步走写摘要: Multi-view Low-rank Sparse Subspace Clustering
摘要解读第一步: 交代背景:多视角数据的普遍性和重要性第二步: 概括当前方法 。第三步: 一般介绍现有方法的不足Most existing approaches address multi-view subspace clustering problem by constructing the affinity matrix on each view separately and afterwards propose how to extend spectral clustering al.
2020-09-11 14:03:35 511
原创 7步走写摘要: Diversity and consistency learning guided spectral embedding for multi-view clustering
本篇论文发表于Neurocomputing,。本栏目着重于学习怎么样写论文摘要。从一个七步走的方法对论文摘要进行叙述,每一步需要写什么,怎么写。多视图聚类旨在将数据点分组到其类中。利用多视图基础的互补信息来提高聚类性能是多视图聚类的主题之一。大多数现有的多视图聚类方法仅限制数据空间中的多样性和一致性,而没有考虑学习标签空间中的多样性和一致性。但是,自然要考虑学习标签矩阵中多样性的影响,因为不同的视图会生成不同的聚类标签矩阵,其中一些标签是一致的,而有些则是多样化的。为了克服这个问题,我们通过在学习的
2020-05-17 15:49:56 351
原创 7步走写摘要: Deep Multi-View Concept Learning
本篇论文发表于IJCAI International Joint Conference on Artificial Intelligence (2018),CCF A类。本栏目着重于学习怎么样写论文摘要。从一个七步走的方法对论文摘要进行叙述,每一步需要写什么,怎么写。多视图数据在现实世界的数据集中很常见,其中不同的视图描述了不同的观点。为了更好地总结多视图数据中一致和互补的信息,研究人员提出了各种基于视图分解模型的多视图表示学习算法。但是,大多数以前的方法都集中在浅层分解模型上,该模型无法捕获复杂的
2020-05-17 10:27:16 390
原创 7步走写摘要: Deep Attributed Network Embedding
本篇论文发表于IJCAI International Joint Conference on Artificial Intelligence (2019),CCF A类。本栏目着重于学习怎么样写论文摘要。从一个七步走的方法对论文摘要进行叙述,每一步需要写什么,怎么写。 近年来,通过跨多个视图使用通用的聚类结构,多视图聚类引起了越来越多的关注。 现有的大多数多视图聚类算法都使用浅层和线性嵌入函数来学习多视图数据的通用结构。 但是,这些方法不能充分利用多视图数据的非线性特性,这对于揭示复杂的聚类结
2020-05-16 23:34:32 525
原创 7步走写摘要:Deep Adversarial Multi-view Clustering Network
本篇论文发表于IJCAI International Joint Conference on Artificial Intelligence (2019),CCF A类。本栏目着重于学习怎么样写论文摘要。从一个七步走的方法对论文摘要进行叙述,每一步需要写什么,怎么写。近年来,通过跨多个视图使用通用的聚类结构,多视图聚类引起了越来越多的关注。 现有的大多数多视图聚类算法都使用浅层和线性嵌入函数来学习多视图数据的通用结构。 但是,这些方法不能充分利用多视图数据的非线性特性,这对于揭示复杂的聚类结构很重要
2020-05-16 21:47:30 866
原创 【每日一题】25. K 个一组翻转链表
25. K 个一组翻转链表难度困难531收藏分享切换为英文关注反馈给你一个链表,每k个节点一组进行翻转,请你返回翻转后的链表。k是一个正整数,它的值小于或等于链表的长度。如果节点总数不是k的整数倍,那么请将最后剩余的节点保持原有顺序。示例:给你这个链表:1->2->3->4->5当k= 2 时,应当返回:2->1->4->3->5当k= 3 时,应当返回:3->2->1->4->...
2020-05-16 21:37:15 171
原创 7步走写摘要:Multi-view multiple clustering
本篇论文发表于NIJCAI International Joint Conference on Artificial Intelligence (2019),CCF A类。本栏目着重于学习怎么样写论文摘要。从一个七步走的方法对论文摘要进行叙述,每一步需要写什么,怎么写。多重聚类旨在探索替代性聚类,以便从不同角度将数据组织成有意义的组。现有的多种聚类算法是为单视图数据设计的。我们假设可以利用...
2020-04-13 21:18:09 723
原创 7步走写摘要:Feature concatenation multi-view subspace clustering
本篇论文发表于Neurocomputing (2020),CCF C类,中科院二区。本栏目着重于学习怎么样写论文摘要。从一个七步走的方法对论文摘要进行叙述,每一步需要写什么,怎么写。多视图聚类是基于多视图数据的学习范例。由于不同视图的统计属性是多种多样的,甚至是不兼容的,因此很少有方法基于直接的级联特征来实现多视图聚类。但是,特征串联是组合多视图数据的自然方法。为此,本文提出了一种被称为特...
2020-04-13 21:10:51 739
原创 Network Embedding:Attributed Signed Network Embedding
摘要:Network Embedding目的是学习到网络节点的低维表征,然后使用得到的表征,进行下游的分析人物,如聚类,分类以及链路预测。现有的大部分Network Embedding方法仅仅被设计应用于无符号社交网络(unsigned social networks)。然而,许多社交媒体网络都有正反两方面的链接,而无符号算法对这些链接的效用很小。最近在符号网络分析中的发现表明,负链接比正链接...
2020-04-13 11:16:05 552
原创 7步走写摘要:Deep graph regularized non-negative matrix factorization for multi-view clustering
本篇论文发表于Neurocomputing (2020),CCF C类,中科院二区。本栏目着重于学习怎么样写论文摘要。从一个七步走的方法对论文摘要进行叙述,每一步需要写什么,怎么写。多视图聚类是一种无监督的方法,旨在通过组合来自多个视图数据的知识来增强聚类性能。非负矩阵分解(NMF)由于其对非负数据的强大表示能力,是最有利的多视图聚类方法之一。但是,NMF仅将数据矩阵分解为两个非负因子矩阵...
2020-04-13 11:13:36 706
原创 7步走写摘要: Multi-view clustering with graph embedding for connectome analysis
本篇论文发表于International Conference on Information and Knowledge Management, Proceedings (2017),CCF B类,会议。基于多视图图的聚类旨在为多视图数据提供聚类解决方案。然而,大多数现有方法没有充分考虑不同视图的权重,并且需要额外的聚类步骤来产生最终的聚类。他们通常还基于所有视图的固定图相似度矩阵来优...
2020-04-11 09:52:15 395
转载 如何写好论文摘要
作者:匿名用户链接:https://www.zhihu.com/question/20028088/answer/381661819来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。...
2020-04-10 23:30:07 205
原创 7步走写摘要: GMC: Graph-based Multi-view Clustering
本篇论文发表于IEEE Transactions on Knowledge and Data Engineering(2019),CCF A类,中科院二区。基于多视图图的聚类旨在为多视图数据提供聚类解决方案。然而,大多数现有方法没有充分考虑不同视图的权重,并且需要额外的聚类步骤来产生最终的聚类。他们通常还基于所有视图的固定图相似度矩阵来优化目标。在本文中,我们提出了一种基于图形的通用多视...
2020-04-10 23:24:33 1230 1
原创 7步走写摘要: Partition level multiview subspace clustering
本篇论文发表于Neural Networks(2020),CCF B类,中科院二区。由于多视图聚类能够处理多个源(视图)数据并探索不同视图之间的补充信息,因此最近受到越来越多的关注。在各种方法中,多视图子空间聚类方法可提供令人鼓舞的性能。它们主要将多视图信息集成在数据点所在的空间中。因此,由于每个单独视图中存在的噪声或异构特征之间的不一致,它们的性能可能会降低。对于多视图群集,基本前提是所有...
2020-04-10 23:05:29 410
原创 一起学习写引言: Multi-view Clustering via Joint Nonnegative Matrix Factorization
摘要对于写论文来说是比较重要的,但是对于我们新手写论文来说,一般比较难于掌握。因此,我才用采用七步走的方法对改论文(Multi-view Clustering via Joint Nonnegative Matrix Factorization)进行解释。摘要解读第一步: 交代背景:多视角数据的普遍性和重要性(Many real-world datasets are comprised o......
2020-04-10 15:42:16 1599 2
实现实时文件同步到远程服务器的Python脚本
2024-03-04
研究生创新项目申请书-基于多模自编码的深度多视角聚类
2024-03-04
Multi-View Clustering via Joint Nonnegative Matrix Factorization .pdf
2020-04-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人