Description
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。
Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
整个文件以两个-1结尾。
Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
Sample Input
6 8 5 3 5 2 6 4 5 6 0 0 8 1 7 3 6 2 8 9 7 5 7 4 7 8 7 6 0 0 3 8 6 8 6 4 5 3 5 6 5 2 0 0 -1 -1
Sample Output
Yes Yes No
很裸的一道并查集的问题。每条边判断两个端点是否在一个集合中,在的话说明前面有路径将他们连接了,不在的话合并集合。但是需要注意(1)房间编号不连续,需要标记是否使用(2)一组数据只有0 0的话要输出Yes(3)可能存在多个不相连的图,需要判断。
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define MAX_SIZE 100005
struct edge{
int u,v;
}e[MAX_SIZE];
int count=0;
int vis[MAX_SIZE];
int par[MAX_SIZE];
int rank[MAX_SIZE];
void init(int n)
{
for(int i=0;i<n;++i){
par[i]=i;
rank[i]=0;
}
}
int find(int x){
if(par[x]==x)
return x;
return par[x]=find(par[x]);
}
void unite(int x,int y){
x=find(x);
y=find(y);
if(x==y) return;
if(rank[x]<rank[y]) par[x]=y;
else {
par[y]=x;
if(rank[x]==rank[y])
++rank[x];
}
}
bool same(int x,int y){
return find(x)==find(y);
}
void add_edge(int u,int v){
e[count].u=u,e[count].v=v;
vis[u]=vis[v]=1;
++count;
}
void judge()
{
init(MAX_SIZE);
int i;
for(i=0;i<count;++i)
{
edge &E=e[i];
if(E.u!=E.v &&same(E.u,E.v))
break;
unite(E.u,E.v);
}
if(count==0)
{
printf("Yes\n");
return;
}
// printf("%d %d\n",i,count);
if(i!=count)
{
printf("No\n");
return;
}
int cnt=0,root=-1,r;
for(int i=0;i<MAX_SIZE;++i)
if(vis[i])
{
if(root!=(r=find(i)))
{
root=r;
++cnt;
}
}
if(cnt!=1)
{
printf("No\n");
return;
}
printf("Yes\n");
}
int main()
{
int u,v;
memset(vis,0,sizeof(vis));
while(~scanf("%d%d",&u,&v))
{
if(u==0&&v==0)
{
judge();
count=0;
memset(vis,0,sizeof(vis));
}
else if(u==-1&&v==-1)
break;
else add_edge(u,v);
}
return 0;
}