自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

一只小包子的博客

没什么好描述的,开始吧

原创 常用Linux命令总结

总结一下工作中常用到的Linux命令 1. 统计文件中某一个字符串出现的次数 在现实场景中一条item可能由多条数据组成 因此简单的统计行数无法确定总体的item数量,一般情况每一个item都会使用一个Flag标识item的开始,需要统计一个文件中该Flag出现的次数,即一个文件中出现特定字符串的...

2019-09-26 20:10:25

阅读数 3

评论数 0

原创 TensorFlow常用总结

文章目录1.计算图节点与Tensor 1.计算图节点与Tensor TensorFlow计算图中每一个节点都定义了一个计算,而计算的结果都通过Tensor 来保存,因此Tensor和计算图中节点对应的计算结果所对应,同时Tensor具有3个重要属性,name,dtype,shape,通过name可...

2019-09-15 20:54:33

阅读数 4

评论数 0

原创 2019大数据挑战赛

文章目录1.前言2.基础知识准备2.1 语义相似度度量2.2 representation based model(表示模型)和 interaction based model(交互模型)2.3 point-wise,pair-wise,list-wise 训练方式2.4 排序常用评价指标 1.前...

2019-08-18 23:04:32

阅读数 145

评论数 0

原创 面试算法总结----回溯(subset i, subset ii , permutation i , permutation ii, )

subset class Solution { List<List<Integer>> result=new ArrayList<>(); public List<List&l...

2019-06-10 22:58:24

阅读数 40

评论数 0

原创 笔试总结----位运算

https://blog.csdn.net/xiaochunyong/article/details/7748713 Java中位运算主要包括 & (与) |(或)~(非) ^ (异或 ) >> (左移) >>(右移) ...

2019-06-04 16:46:12

阅读数 22

评论数 0

原创 面试问题总结----GBDT&LightGBM&Xgboost

1.信息熵 信息增益 信息增益率 基尼系数 在信号中每种信号出现的可能为pi (对应到最简单的二分类为 0 出现的可能为p0,1出现的可能为p1) 我们使用-log pi 来表示这种不确定性 ,那么对于所有信号的不确定性 很明显需要使用他们的期望来表示 即 -∑pilog(pi) 称为信息熵...

2019-04-29 11:15:24

阅读数 388

评论数 0

原创 面试准备----深度学习

ResNet的网络结构以及 ResNet和之前的网络创新的地方 ResNet为什么要使用小的卷积核 反向传播的推导 BN层以及DropOut层的作用

2019-04-19 12:09:30

阅读数 138

评论数 1

原创 面试准备---- 交叉熵,相对熵(KL散度),softmax

1.信息熵 在信源中有n个独立取值的信号,每种信号出现的可能性分布为 p1,p2 ,…pn,且各个符号的出现相互独立,那么整体信源的不确定性为单个符号不确定性的统计平均值(单个信号不确定性为 log(1/p)) 称为信息熵 即 H(U) =E[- log( p )]=-∑ pi log(pi),当...

2019-04-18 18:46:31

阅读数 116

评论数 0

原创 面试总结------SVM

SVM基本思想 SVM解决的是一个二分类问题 ,在特征空间中寻找一个最优的超平面 将样本能够正确分开 同时使得样本点到该超平面的距离最大 函数间隔与几何间隔 给定数据集T和超平面 w,b 函数间隔可以表示为 yi(wxi+b) 函数间隔可以表示分类的准确性和确信度 但是成比例更改w,和b不会...

2019-04-16 15:00:12

阅读数 48

评论数 0

原创 CTR预估系列文章------NFFM

文章目录NFFM文章解读与源码分析NFFM文章解读 NFFM文章解读与源码分析 NFFM文章解读 首先 将用户特征,媒体特征,上下文特征等全部转化为特征向量,如下所示: X=[x1,x2,… xn] 其中xi表示第i个特征组(类似于FFM中field 的概念) 如果第i个特征是category特...

2019-04-15 21:07:25

阅读数 1146

评论数 0

原创 面试准备------笔试中的算法题

数组中有n个正整数,每次可以选择其中一个数进行乘2或者除以2的操作(对于奇数除以2取其整数部分),求使得数组中的n个数变成相同的数的最小操作次数 样例: 2,4,8 输出 2(对2进行乘2操作,对8进行除以2操作) 3,7,14 输出3 (对7进行除以2操作,对14进行两次除以2操作) 2,...

2019-04-14 23:07:48

阅读数 71

评论数 0

原创 面试算法总结------动态规划

动态规划 动态规划中最重要的两点就是 1.确定状态的定义,即将一个问题准确的定义为某一个状态方程 2.确定状态转移方程的定义 即将上述定义的状态方程与其之前的状态进行关联 3.将状态转移过程中的中间变量进行保存 避免多次重复运算 1. 0,1背包问题 给定一个容量为C的背包,给定需要在背包中装...

2019-04-11 15:40:57

阅读数 139

评论数 0

原创 面试总结------回溯问题

回溯问题作为面试算法中经典问题之一,同时也是很容易总结出一套固定解题模板的算法类别,这里使用Leetcode中top-100 liked 为例,并尝试在解题过程中总结出对应的解题思路和解题模板 重点: 1.对于回溯问题最重要的一点就是在 foward—>backtrack 这...

2019-02-25 22:43:21

阅读数 62

评论数 0

原创 面试准备------动态规划问题

动态规划 1. Coin Change 问题: 输入一组硬币值 以及需要兑换的总数 输出可兑换的最少硬币数量 不可兑换输出-1 示例: Input: coins = [1, 2, 5], amount = 11 Output: 3 Explanation: 11 = 5 + 5 + 1 解析...

2019-02-19 14:47:36

阅读数 238

评论数 0

原创 面试准备------LR模型

logistics regression 首先明确参数模型和非参数模型的概念: 在参数模型中 通常假设总体服从某一分布,这些分布由某些参数所决定 (例如正态分布由均值和方差所决定),在此基础上构建的模型 称为参数模型 Logistics Regression 便是一个参数模型,假设总体服从伯努利分...

2019-02-18 20:50:32

阅读数 163

评论数 0

原创 机器学习技法实现------决策树

写在前面 决策树博客 ID3 实现 因为决策树的创建是递归的形式 所以整个创建过程符合传统递归算法的套路 即 递归返回条件 递归切分条件 递归过程 首先递归返回条件: 当输入训练样本的label完全属于同一类时 返回树的叶子节点,返回值为该类别值 当输入样本的特征均已被遍历过一次(每次生成树的...

2019-01-22 21:44:33

阅读数 54

评论数 0

原创 机器学习技法------Blending and Bagging

Blending 在训练样本中学习得到若干个gt G= 1/T ∑ t gt 则: 此时是对于一个样本x 如果是对于所有的样本那么就变成了 avg(Eout(gt))= avg(ε(gt-G)2)+Eout(G) 此时可以看做 Eout(G) 代表多个g和真正分布之间的差距 叫做bias 而...

2019-01-08 10:02:35

阅读数 63

评论数 0

原创 CTR预估中模型设计

KL散度与交叉熵 定义 log(1/p) 为香农信息量 定义熵为香农信息量的期望 即E(pi)=∑ipilog(1/pi) 我们都知道 在机器学习中我们要做的就是通过目标函数拟合数据真实分布 定义 数据的真实分布为p ,我们的目标函数拟合的数据分布为q 举例说明: 若包含四个字母(A,B,C,D)...

2019-01-07 20:49:08

阅读数 50

评论数 0

原创 机器学习技法------Kernel Logistics Regression

从Soft margin 出发 对于soft margin 而言 和 hard margin唯一的不同就是增加了一个 ζ,而ζ代表的是 margin violation (即违反margin的大小) 也就是说 对于support vector而言 违反的margin大小就是当前点的位置到原始边界的...

2018-12-27 08:42:57

阅读数 68

评论数 0

原创 机器学习技法-------作业一

[Ref] REF2(https://tulongf.github.io/2017/01/17/机器学习技法Homework1/) 对于原始的soft margin svm 目标函数为 ∑w,b,ζ 1/2 ||w|| 2+∑i ζi 其中w 为d个 ζ为N个 b为一个 因此总共 N+d+1...

2018-12-24 23:35:05

阅读数 280

评论数 0

提示
确定要删除当前文章?
取消 删除