机器学习基石------Linear Model for Classification

机器学习基石------Linear Model for Classification

Linear Model for Binary Classification
Stochastic Gradient Descent
Multiclass via Logistic Regression
Multiclass via Linear Regression

Linear Model for Binary Classification
![在这里插入图片描述](https://img-blog.csdnimg.cn/20181122185241607.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2E5NDA5MDI5NDA5MDI=,size_16,color_FFFFFF,t_70) 线性分类问题: h(x)=sign(s) (s为score 即目标函数 在测试样本上的得分) error=(h(x)≠y) = ysign(s)≠ 1 即 sign(ys)≠1

线性回归问题
h(x)=s
error=(s-y)2 = (s-y)2 * y2=(ys-1)2

logistics 回归问题
h(x)= θ(s) θ(s)= 1/1+e-s
最大化p(y|x) 对于 y=1 p(y|x)=h(x) 对于y=-1 p(y|x)=1-h(x) 又因为对于 sigmod 函数 1-h(x) =h(-x)
所以 max h(yx) 连乘 等价于 error =-ln(h(yx))= ln(1+exp(-yx))

对于0-1 误差和ys的关系
在这里插入图片描述

在这里插入图片描述
由此可见 平方误差和交叉熵误差都能够bound住0-1 误差
也就是说如果使用logistics regression或者 linear regression 求解Binary classification 问题 保证 logistics regression 或者linear regression 在训练样本上的误差在较小的范围内 则能保证具有较小的 0-1误差

在这里插入图片描述

对于任意的ys具有如下性质 同样的对于所有ys的期望也符合这一不等式

Stochastic Gradient Descent
对于logistics regression 损失函数为 error = ∑ n ln(1+exp(-ywx)) 每次沿着梯度下降最快的方向更新一小步 所以需要求得梯度下降最快的方向 即求error 对于w的导数 ![在这里插入图片描述](https://img-blog.csdnimg.cn/20181122210351195.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2E5NDA5MDI5NDA5MDI=,size_16,color_FFFFFF,t_70)

在这里插入图片描述

随机抽取几个样本来代替整体的平均 如果每次都只抽取一个 如果跑足够多步 真实的梯度和平均梯度近似

在这里插入图片描述

在这里插入图片描述
和PLA相比 都是加上ynxn 但是PLA是判断当前结果是否和预测结果相同 如果不一致则加上ynxn SGD LR 则不同 乘上的是一个soft更新规则 当wx 分数很大 同时y为正 则 -ywx为一个很大的负值 sigmod函数接近0 不更新 当wx很大 y为负 则 -ywx为一个很大的正值 sigmod接近1 则更新力度很大

Multiclass via Logistic Regression

在这里插入图片描述

多分类问题可以转化为二分类 但是存在一个问题是 可能存在区域多个二分类器都判断为正 或者存在某些区域所有二分类器都判断为负

在这里插入图片描述

这些可以通过软性分类 不止是判断是否 同时给出概率预测
在这里插入图片描述
对于每一个类别 跑一个LR算法 目标类别为正样本 其他类别为负样本 得到k个分类器

测试样本分别跑k个分类器 得分最高则判别为该类别

可能存在问题: 正负样本在训练的时候是不平衡的 因为只有其中一个类别是正样本 其他都为负样本

Multiclass via Linear Regression

在这里插入图片描述

在k个类中选取 C2k 个两两一对作为正负样本进行训练二元分类
在这里插入图片描述
如下4类则得到6个分类器 对于一个样本通过这六个分类器可以得到六个结果 投票得到最终结果

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值