最大流问题

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <queue>
#define INF 100000//无穷
#define MAX 500//结点上限
#define Min(x,y) x<y?x:y
using namespace std;
int map[MAX][MAX];//网络
int flow[MAX][MAX];//可行流
int d[MAX];//首先做标志数组,然后做存储最大公共增量的数组。
int pre[MAX];//记录结点的父节点
int n,m;//n个顶点,m条边

int max_flow(int s,int t)//s,起点,t,汇点
{
    queue <int> q;
    int ans,u,v;
    ans=0;
    memset(flow,0,sizeof(flow));
    while(1)
    {
        memset(d,0,sizeof(d));
        memset(pre,0,sizeof(pre));
        d[s]=INF;
        q.push(s);
        while(!q.empty())//BFS寻找增广路径
        {
            u=q.front();
            q.pop();
            for (v=1;v<=n;v++)
            {
                if (!d[v] && map[u][v]>flow[u][v])//如果v结点没有访问过,并且该边没有饱和
                {
                    pre[v]=u;//记录父结点
                    q.push(v);
                    d[v]=Min(d[u],map[u][v]-flow[u][v]);//从父结点的增量与当前结点的增量中选最小的
                }
            }
        }
        if (d[t]==0) break;//如果汇未被标上号,即没有这样的顶点可选时,即为最大流
        for (u=t;u!=s;u=pre[u])//从汇点往源点,为可行流赋值
        {
            flow[pre[u]][u]+=d[t];//将公共增量加入flow
            flow[u][pre[u]]-=d[t];//若为负边,则减去a【t】
        }
        ans+=d[t];//最大流
    }
    return ans;
}

int main()
{
    int i,x,y,z;
    while(cin>>m>>n)
    {
        memset(map,0,sizeof(map));
        for (i=0;i<m;i++)
        {
            cin>>x>>y>>z;
            map[x][y]+=z;
        }
        int s=1,t=n;
        cout<<max_flow(s,t)<<endl;
    }
    return 0;
}

内容概要:本文介绍了一种利用元启发式算法(如粒子群优化,PSO)优化线性二次调节器(LQR)控制器加权矩阵的方法,专门针对复杂的四级倒立摆系统。传统的LQR控制器设计中,加权矩阵Q的选择往往依赖于经验和试错,而这种方法难以应对高维度非线性系统的复杂性。文中详细描述了如何将控制器参数优化问题转化为多维空间搜索问题,并通过MATLAB代码展示了具体实施步骤。关键点包括:构建非线性系统的动力学模型、设计适应度函数、采用对数缩放技术避免局部最优、以及通过实验验证优化效果。结果显示,相比传统方法,PSO优化后的LQR控制器不仅提高了稳定性,还显著减少了最大控制力,同时缩短了稳定时间。 适合人群:控制系统研究人员、自动化工程专业学生、从事机器人控制或高级控制算法开发的技术人员。 使用场景及目标:适用于需要精确控制高度动态和不确定性的机械系统,特别是在处理多自由度、强耦合特性的情况下。目标是通过引入智能化的参数寻优手段,改善现有控制策略的效果,降低人为干预的需求,提高系统的鲁棒性和性能。 其他说明:文章强调了在实际应用中应注意的问题,如避免过拟合、考虑硬件限制等,并提出了未来研究方向,例如探索非对角Q矩阵的可能性。此外,还分享了一些实践经验,如如何处理高频抖动现象,以及如何结合不同类型的元启发式算法以获得更好的优化结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值