注意本文数组开头元素为第0个元素
一、插入排序
思想:从第一个元素开始,判断这个元素该处位置,也就是要跟前面的元素比较大小(此时前两个元素已拍好序),接着第二个元素同样执行此步骤,那样一来,当判断第P个元素所处位置时,0~P-1个元素就已经拍好序了,那么只需要从P开始往前判断,插入到P该处的位置便完成前P个元素的排序,因为这相当于一个一个元素往数组里面插入,所以叫插入排序。
void InsertionSort(int a[],int N){
int P,j;
for(P=1;P<N;P++){
int tmp=a[P];
for(j=P;j>=0&&a[j-1]>tmp;j--)
a[j]=a[j-1];
a[j]=tmp;
}
}
二、希尔排序
思想:设定一个步进值h,值得下标相差h的数组分别排序(相当于将此数组分为若干字数组,这些子数组分别排序),逐渐缩小步进值h,重复以上排序过程,知道h=1,此时排序完成。
void ShellSort(int a[],int N){
int i,j,increment;
for(increment=N/2;increment>0;increment/=2){
for(i=increment;i<N;i++){
int tmp=a[i];
for(j=i;j>=increment&&a[j-increment]>tmp;j-=increment)
a[j]=a[j-increment];
a[j]=tmp;
}
}
}
三、堆排序
思想:还记得我们在二项堆中曾经利用二项堆的堆序性质对数组进行排序,我们是通过不断将二项堆的堆首元素弹出来完成这个过程,但是这个过程需要用到额外的空间来存储弹出的元素。当有元素被弹出后,就会有空间空闲出来,所以我们可以把空闲的空间用来存储弹出的元素,那么便可解决空间浪费问题。
首先是建二项堆的过程(若要从小到达排序,就建最大堆,当我们把堆首元素弹出时是放在最后面,这样一来当所有元素都弹出来的时候,从前往后看就是从小到达的排序),其次是将堆首元素不断弹出,放在数组的后面。
void PercDown(int a[],int i,int N){
int tmp=a[i];
int child;
for(;lchild(i)<N;i=child){
child=lchild(i);
if((child+1<N)&&a[child+1]>a[child])
child++;
if(a[child]>tmp)
a[i]=a[child];
else
break;
}
a[i]=tmp;
}
void HeapSort(int a[],int N){
int i,j;
for(i=N/2;i>=0;i--){
PercDown(a,i,N);
}
for(i=N-1;i>0;i--){
swap(&a[0],&a[i]);//将第一个元素与最后一个元素交换,则此时最大元素在数组的最后面
PercDown(a,0,i);//此时第一个元素可能破坏了堆序性质
}
}
void swap(int *a,int *b){
int t;
t=*a;
*a=*b;
*b=t;
}