本系列是作者日常学习科研中的笔记,文章会很乱,本着开源精神分享出来,希望能对大家有帮助,也接受大家的批评建议
MNE系列是我做的项目中用到的技术,项目与脑电有关,使用MNE库就是为了进行脑电预处理
一、安装
在python的命令行中输入
pip install -U mne
然后我报了一个错误
网上查到是因为pip没有添加到系统环境变量中。
输入命令让pip升级检查一下
pip install --upgrade pip
好的没有问题了(●ˇ∀ˇ●)
创建一个项目,编译,然后报错:ModuleNotFoundError: No module named 'mne'
经过检查后发现,我使用的pip是另外一个python编译器的,东西都下载在了另一个编译器的目录下,那么更换编译器就可以解决了
二、导入数据
在官网上找了个例程代码,功能为导入指定目录的EEG数据
import numpy as np
import mne
sample_data_folder = mne.datasets.sample.data_path()
sample_data_raw_file = (
sample_data_folder / "MEG" / "sample" / "sample_audvis_filt-0-40_raw.fif"
)
raw = mne.io.read_raw_fif(sample_data_raw_file)
因为之前没有下载,需要等一会,不得不说1.5G的数据是真的多啊。
数据保存在了这个位置
试试读取EEG的数据
print(raw)
print(raw.info)
完美,那么现在我们有EEG数据了,现在查看一下数据图表
raw.compute_psd(fmax=50).plot(picks="data", exclude="bads", amplitude=False)
raw.plot(duration=5, n_channels=30)
结果生成不了一会就闪退了
查了一下,在代码末尾加入一句代码,变成:
raw.compute_psd(fmax=50).plot(picks="data", exclude="bads", amplitude=False)
raw.plot(duration=5, n_channels=30)
input()
生成了以下图表:
左边是所有通道的电极数据,右边是功率谱密度。如果你再功率谱密度上选择一个区间,还可以获得一个新的图像。
这些图片里的数据究竟是什么意思还有待笔者学习。