遗传算法的性能评估

针对求解统一优化问题,不同参数设置的两个或多个遗传算法,或者遗传算法与其他启发式搜索算法,如何进行性能比较呢?一般可以归纳为求解效率求解质量两个方面。接下来介绍几个指标。

1.适应值函数计算次数

是指发现同样适应性的个体,或者找到同样质量的可行解,所需要的计算次数。值越小,搜索效率越高。或者相反,在一定次数下比较发现的最佳个体或者找到可行解的质量。

2.在线和离线性能函数

在这里插入图片描述

3.最优解搜索性能

采用当前群体发现的最佳可行解的改善情况作为度量遗传算法搜索能力的基本指标。
在这里插入图片描述
其中,Pbest可以反映遗传算法搜索到全局最优解的过程、速度、早熟等情况,也是是影响参数调整的基础。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值