34.122.买卖股票的最佳时机II

思路:

本题和121. 买卖股票的最佳时机 (opens new window)的唯一区别是本题股票可以买卖多次了(注意只有一只股票,所以再次购买前要出售掉之前的股票)

只有一只股票,最多只能持有一支股票

但是可以多次买入卖出。那么区别就在于递推公式可以做变化 

储备:

代码随想录

问题重点:

1、

121. 买卖股票的最佳时机 (opens new window)中,因为股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]。

而本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。

那么第i天持有股票即dp[i][0],如果是第i天买入股票,所得现金就是昨天不持有股票的所得现金 减去 今天的股票价格 即:dp[i - 1][1] - prices[i]。

2、滚动数组版:

        //i%2随着i++是交替的。只有2*2的数组大小。第一列的前一天可能是第二列

        //最后一天保持和for循环的最后一次相一致

最后:

滚动数组版:

class Solution {//滚动数组版
public:
    int maxProfit(vector<int>& prices) {
        int n=prices.size();
        vector<vector<int>> dp(2,vector<int>(2));
        //第i天有两个状态。0表示不持有股票。1表示持有股票

        if (n==1) return 0;
        dp[0][0]=0;
        dp[0][1]=-prices[0];
        //i%2随着i++是交替的。只有2*2的数组大小。第一列的前一天可能是第二列
        for (int i=1;i<n;i++) {
            //不持有:继续不持有或者卖出了
            dp[i%2][0]=max(dp[(i-1)%2][0],dp[(i-1)%2][1]+prices[i]);
            //卖了更赚就卖,不然就一直留着
            //持有:继续持有或者没有时再买入
            dp[i%2][1]=max(dp[(i-1)%2][1],dp[(i-1)%2][0]-prices[i]);
            //亏的少再持有股票,不然就不持有。
        }

        return dp[(n-1)%2][0];//最后一天保持和for循环的最后一次相一致
    }
};

正常版:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n=prices.size();
        vector<vector<int>> dp(n+1,vector<int>(2));
        //第i天有两个状态。0表示不持有股票。1表示持有股票

        if (n==1) return 0;
        dp[0][0]=0;
        dp[0][1]=-prices[0];

        for (int i=1;i<n;i++) {
            //不持有:继续不持有或者卖出了
            dp[i][0]=max(dp[i-1][0],dp[i-1][1]+prices[i]);
            //卖了更赚就卖,不然就一直留着
            //持有:继续持有或者没有时再买入
            dp[i][1]=max(dp[i-1][1],dp[i-1][0]-prices[i]);
            //亏的少再持有股票,不然就不持有。
        }

        return dp[n-1][0];//不持有一定比持有大
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值