思路:
本题和121. 买卖股票的最佳时机 (opens new window)的唯一区别是本题股票可以买卖多次了(注意只有一只股票,所以再次购买前要出售掉之前的股票)
只有一只股票,最多只能持有一支股票
但是可以多次买入卖出。那么区别就在于递推公式可以做变化
储备:
问题重点:
1、
在121. 买卖股票的最佳时机 (opens new window)中,因为股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]。
而本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。
那么第i天持有股票即dp[i][0],如果是第i天买入股票,所得现金就是昨天不持有股票的所得现金 减去 今天的股票价格 即:dp[i - 1][1] - prices[i]。
2、滚动数组版:
//i%2随着i++是交替的。只有2*2的数组大小。第一列的前一天可能是第二列
//最后一天保持和for循环的最后一次相一致
最后:
滚动数组版:
class Solution {//滚动数组版
public:
int maxProfit(vector<int>& prices) {
int n=prices.size();
vector<vector<int>> dp(2,vector<int>(2));
//第i天有两个状态。0表示不持有股票。1表示持有股票
if (n==1) return 0;
dp[0][0]=0;
dp[0][1]=-prices[0];
//i%2随着i++是交替的。只有2*2的数组大小。第一列的前一天可能是第二列
for (int i=1;i<n;i++) {
//不持有:继续不持有或者卖出了
dp[i%2][0]=max(dp[(i-1)%2][0],dp[(i-1)%2][1]+prices[i]);
//卖了更赚就卖,不然就一直留着
//持有:继续持有或者没有时再买入
dp[i%2][1]=max(dp[(i-1)%2][1],dp[(i-1)%2][0]-prices[i]);
//亏的少再持有股票,不然就不持有。
}
return dp[(n-1)%2][0];//最后一天保持和for循环的最后一次相一致
}
};
正常版:
class Solution {
public:
int maxProfit(vector<int>& prices) {
int n=prices.size();
vector<vector<int>> dp(n+1,vector<int>(2));
//第i天有两个状态。0表示不持有股票。1表示持有股票
if (n==1) return 0;
dp[0][0]=0;
dp[0][1]=-prices[0];
for (int i=1;i<n;i++) {
//不持有:继续不持有或者卖出了
dp[i][0]=max(dp[i-1][0],dp[i-1][1]+prices[i]);
//卖了更赚就卖,不然就一直留着
//持有:继续持有或者没有时再买入
dp[i][1]=max(dp[i-1][1],dp[i-1][0]-prices[i]);
//亏的少再持有股票,不然就不持有。
}
return dp[n-1][0];//不持有一定比持有大
}
};