- 博客(72)
- 收藏
- 关注
原创 OpenCv高阶(二十)——dlib脸部轮廓绘制
从形状数组中获取起点到终点的所有点# 遍历这些点,依次连接相邻点# 获取前一个点# 获取当前点# 在图像上绘制连接这两个点的绿色线段# 从形状数组中获取指定范围内的点# 计算这些点的凸包(最小凸多边形)mouthHull = cv2.convexHull(Facial) # 凸包函数# 在图像上绘制凸包轮廓(绿色)这种组合方法(凸包+直线连接)在保持效率的同时,能够准确描绘人脸的主要特征轮廓,适用于人脸分析、AR滤镜等应用场景。
2025-05-29 15:32:14
682
原创 OpenCv高阶(十九)——dlib关键点定位
人脸关键点定位(Facial Landmark Detection),也称为人脸特征点检测或人脸对齐,是计算机视觉领域的一项基础任务。它的核心目标是在一张包含人脸的图像中,自动地、精确地定位出人脸上一系列预定义的关键解剖点的位置坐标(通常是二维像素坐标)。人脸关键点定位是让计算机“看懂”人脸结构的基础技术。它通过精确定位一系列预定义的面部特征点,为众多上层应用(人脸识别、表情分析、美颜滤镜、AR特效等)提供了至关重要的几何结构信息。
2025-05-29 10:23:04
1403
原创 OpenCv高阶(十八)——dlib人脸检测与识别
Dlib的人脸检测技术通过提供双引擎解决方案,在计算机视觉领域展现了独特的平衡艺术:其HOG检测器以轻量高效的特性(2MB模型、30+ FPS实时性)成为移动端和实时视频的首选,而CNN检测器凭借深度学习带来的高精度(支持多角度、复杂光照),在静态图像分析中树立了行业标杆。这种“鱼与熊掌兼得”的设计哲学,既解决了传统方法对硬件依赖的桎梏(HOG纯CPU运行),又通过模块化架构实现了从基础检测到人脸识别、姿态分析的生态延伸,堪称轻量级框架中兼顾速度与精度的典范。
2025-05-27 21:18:32
1389
原创 OpenCv高阶(十三)——人脸检测
在人工智能技术飞速发展的今天,计算机视觉(Computer Vision)正悄然改变我们的生活。从手机解锁到安防监控,从虚拟美颜到人机交互,人脸检测(Face Detection)作为这一领域的核心技术,始终扮演着“第一双眼睛”的角色。它不仅是理解人类身份、表情与行为的关键入口,更是迈向更复杂视觉任务(如人脸识别、姿态分析)的基石。要实现人脸识别首先要判断当前图像中是否出现了人脸,这就是人脸检测。只有检测到图像中出现了人脸,才能据此判断这个人到底是谁。
2025-05-27 19:49:29
1558
1
原创 大模型介绍
在这个连冰箱都能聊天的时代,人工智能正以“大模型”之名掀起巨浪。它们不是科幻电影里的神秘代码,而是由海量数据和复杂算法构建的智能引擎——能和你探讨哲学、生成代码、创作插画,甚至预测蛋白质结构。大模型的核心在于“大”:数十亿参数构成的神经网络,吞噬着人类千年文明积累的文字、图像与知识。它们像一块数字海绵,从维基百科的严谨词条,到社交媒体的碎片化表达,不断吸收、重组,最终学会理解并模仿人类的思维方式。这场革命已悄然渗透现实:程序员用AI助手调试代码,设计师与工具合作生成概念图,科学家借大模型加速药物研发。
2025-05-24 13:47:49
944
原创 OpenCv高阶(十七)——dlib库安装、dlib人脸检测
人脸检测是计算机视觉领域的核心基础任务之一,广泛应用于安防监控、人机交互、智能摄影等领域。本文基于经典的 dlib 库和 OpenCV 工具,实现了一个简单但高效的人脸检测系统。Dlib 是一个由 C++ 编写的高性能开源机器学习库,同时支持 Python 接口。它广泛应用于图像处理、人脸检测、人脸识别、目标跟踪、特征提取等任务,尤其以 人脸关键点检测(如 68 点特征)和 高效的机器学习算法 著称。图像处理:人脸检测(HOG、CNN 方法)、关键点检测、图像分割等。
2025-05-22 21:50:16
1248
原创 OpenCv高阶(六)——指纹验证
指纹识别作为生物特征识别技术的核心应用之一,在身份认证、安全防控等领域发挥着重要作用。传统指纹验证方法依赖于人工设计的特征提取规则,而基于计算机视觉的特征匹配技术能够通过自动化方式实现更高效、更精准的比对。本案例以OpenCV库为核心工具,采用SIFT(尺度不变特征变换)算法提取指纹图像的局部特征,结合FLANN(快速近似最近邻)匹配器实现特征点匹配,并通过Lowe’s比率测试筛选高质量匹配对。案例重点演示了如何通过算法在待验证指纹图像与模板图像之间建立可靠的特征对应关系,并通过可视化手段直观展示匹配结果。
2025-05-22 08:45:21
848
原创 OpenCv高阶(十六)——Fisherface人脸识别
人脸识别作为计算机视觉领域的核心课题之一,在安全监控、身份认证、人机交互等领域具有广泛的应用前景。早期的经典方法如Eigenface(基于主成分分析,PCA)通过无监督降维提取人脸的主要特征,但其忽略了类别标签信息,对光照、表情等类内变化敏感,导致分类性能受限。为解决这一问题,Belhumeur等人于1997年提出了Fisherface方法,将线性判别分析(Linear Discriminant Analysis, LDA)引入人脸识别领域。
2025-05-21 16:19:46
1043
原创 OpenCv高阶(十五)——EigenFace人脸识别
人脸识别作为生物特征识别技术的重要分支,凭借其非接触性与便捷性,广泛应用于安防、金融等领域。传统方法依赖几何特征或局部纹理分析,但对光照、姿态变化敏感,泛化能力受限。1991年Turk与Pentland提出的EigenFace算法,开创性地将主成分分析(PCA)应用于人脸识别,通过构建低维“特征脸”空间实现高维人脸数据的高效表征,为统计学习方法奠定了基石。尽管深度学习已在识别精度上实现突破,但EigenFace揭示的“特征空间降维”思想仍是理解现代算法的关键。
2025-05-21 16:17:18
1458
1
原创 OpenCv高阶(十四)——LBPH人脸识别
在人工智能技术蓬勃发展的今天,深度学习模型(如CNN、Transformer)在人脸识别领域占据主导地位。然而,在计算资源有限或需要快速部署的场景中,经典算法依然展现出独特的价值。LBPH(Local Binary Patterns Histograms) 作为一种基于纹理特征的人脸识别算法,凭借其简洁的原理、高效的实现和对光照变化的鲁棒性,成为传统方法中的代表性技术。LBPH的核心思想源于对图像局部纹理特征的捕捉。它不依赖复杂的数学模型,而是通过比较像素邻域的灰度关系,生成具有判别性的特征向量。
2025-05-21 10:41:33
1587
原创 OpenCv高阶(六)——指纹识别
本文通过Python代码实现了一个基于SIFT特征和FLANN匹配器的指纹识别系统,能够从数据库中快速匹配目标指纹并输出识别结果。本代码实现了一套完整的指纹识别系统,结合SIFT的稳定性与FLANN的高效匹配,适用于小规模数据库的快速身份认证场景。
2025-05-21 09:25:59
1277
原创 OpenCv高阶(8.0)——答题卡识别自动判分
完整代码展示import cv2import osi=0i=1dim=Noneelse:#一共四个坐标点#按顺序找到对应的坐标0123,分别是左上右上右下、左下s=pts.sum(axis=1) #对矩阵的每一行进行求和操作#获取输入的坐标点#计算输入的w和h值#预处理"灰度处理、做高斯滤波、边缘检测"#轮廓检测doCnt=None#根据轮廓大小进行排序,准备透视变换break#执行透视变换#阈值处理#根据实际情况指定标准#按照从上到下的顺序排序。
2025-05-20 15:59:28
1101
原创 初识函数------了解函数的定义、函数的参数、函数的返回值、说明文档的书写、函数的嵌套使用、变量的作用域(全局变量与局部变量)
函数是组织好的、可重复使用的代码段,用于实现单一或相关联功能的封装。如同生活中的工具,函数能让我们避免重复造轮子,提高开发效率和代码可维护性。def 函数名(参数) : """函数说明文档""" 函数体 return 返回值。
2025-05-19 22:13:48
526
原创 OpenCv(7.0)——银行卡号识别
本代码实现基于传统图像处理技术,通过模板匹配识别银行卡号。模板数字提取→图像预处理→卡号区域定位→数字分割与识别→结果可视化。适用场景:金融业务自动化、移动支付绑卡等需要快速卡号识别的场景。该项目展现了传统视觉技术在特定场景下的实用价值,为金融科技自动化提供了基础能力支撑。未来通过与深度学习、边缘计算等技术的深度融合,有望在跨境支付、智能终端等领域形成更成熟的解决方案,成为金融基础设施的重要组成部分。
2025-05-19 22:04:35
1150
原创 支持向量机原理推导(一)
定义:核函数KxixjϕxiTϕxjKxixjϕxiTϕxj,表示高维特征空间中映射向量的内积。优势:无需显式计算高维映射,直接在原始空间计算核函数,降低计算复杂度。常见核函数多项式核函数KxixjxiTxj1dKxixjxiTxj1dddd为多项式次数);高斯径向基函数(RBF)核函数Kxixjexp−∥xi−xj∥22σ2Kxi。
2025-05-17 08:37:02
824
原创 YOLO V3目标检测模型
YOLO v3 通过多尺度检测(利用 FPN 结构在 13×13、26×26、52×52 三个特征图上分别检测大、中、小目标,每个尺度 3 种锚框共 9 种)、更强的 Darknet-53 骨干网络(53 层卷积 + 残差连接)、多标签分类(二元逻辑回归替代 softmax)、灵活输入尺寸(默认 416×416)以及优化的损失函数(边界框回归用 MSE,类别和置信度用二元交叉熵),显著提升了多尺度目标检测能力,在 COCO 数据集上 mAP@0.5 达 57.9%,兼顾精度与实时性(22ms / 帧,30
2025-05-17 08:36:48
871
原创 OpenCv高阶(八)——摄像头调用、摄像头OCR
摄像头 OCR 是指利用摄像头采集图像信息,然后通过光学字符识别(OCR)技术对图像中的文字进行识别和处理的一种技术手段。快速将纸质文档中的文字转换为电子文本,方便编辑、存储和检索,提高文字处理效率。
2025-05-16 08:46:51
1363
原创 OpenCv高阶(十二)——DNN风格迁移
DNN(Deep Neural Network,深度神经网络)风格迁移是一种利用深度神经网络技术,将一张图像的风格(如色彩、笔触、纹理等)迁移到另一张图像(内容图像)上,使内容图像呈现出风格图像的风格,同时保留其自身内容的技术。DNN风格迁移通过预训练网络的特征空间分离内容与风格,利用优化算法调和两者的统计特性,最终生成艺术化图像。这一方法结合了深度学习特征表达的强大能力与优化理论的灵活性,成为计算机视觉与艺术创作的桥梁。
2025-05-16 08:46:20
731
原创 OpenCv高阶(4.0)——案例:海报的透视变换
构建智能文档视觉矫正体系:通过 AI 图像识别技术自动分析文档倾斜特征,结合自适应透视校正模型动态调整校正参数,不仅消除物理歪斜(如扫描歪斜、拍摄俯仰角偏差),还能修复因纸张褶皱、扫描设备误差导致的 “隐性扭曲”,最终呈现视觉上完全平整、几何上严格对齐的标准文档版面,为专业打印奠定基础。通过对计算机视觉技术的综合使用,可以实现很多种对文档的处理任务,还可以将将功能与摄像头结合实现实时处理任务。
2025-05-15 20:33:54
1349
原创 YOLO V2目标检测模型
YOLO v2 通过引入锚框、改进网络结构、优化训练策略等方式,在检测精度、速度和泛化能力上都有显著提升,为后续 YOLO 系列(如 YOLO v3、v4、v5)奠定了基础。YOLO v2 相比 YOLO v1 引入了锚框机制(含 K-means 聚类确定锚框尺寸)、批归一化、Darknet-19 全卷积骨干网络、多尺度训练、细粒度特征融合(passthrough 层)、直接位置预测优化训练稳定性,以及支持分类与检测数据集联合训练的框架,显著提升了检测精度、速度和泛化能力。
2025-05-15 08:47:46
1073
原创 YOLO V1目标检测模型
YOLO(You Only Look Once)算法是一种目标检测算法,是经典的one-stage方法。YOLO v1 开创了单阶段目标检测的先河,其简洁的架构和高效的推理为后续版本(YOLOv2-v8)奠定了基础。尽管存在小目标检测和定位精度的局限性,但其“端到端”的设计思想深刻影响了目标检测领域的发展。YOLO-v1通过回归思想革新了目标检测流程,以速度和全局信息优势成为实时检测的里程碑。
2025-05-15 08:47:16
594
原创 yolo目标检测中打标工具labelme介绍
在YOLO等目标检测模型中,对图片进行打标的核心目的是为监督学习提供训练数据,通过标注目标物体的边界框和类别标签,使模型能够学习识别和定位目标的规律。打标数据为模型训练提供监督信号,通过对比预测结果与真实标注值,计算定位损失、分类损失和置信度损失,驱动模型参数优化;同时,标注数据也是评估模型性能(如mAP、精度、召回率)的基础,确保模型在多样场景(如多尺度目标、遮挡、复杂背景)中具备泛化能力。此外,标注数据需与数据增强操作同步调整,保证训练过程中图像变换与标注的一致性。
2025-05-14 14:28:20
1670
原创 深度学习—BP神经网络
处理非线性问题:通过多层隐藏层和非线性激活函数,BP 网络可拟合任意复杂的非线性映射(万能近似定理)。梯度消失问题:早期 BP 网络使用 Sigmoid/Tanh 激活函数时,深层网络的梯度会随着反向传播逐渐衰减,导致底层参数更新缓慢(可通过 ReLU 激活函数、批量归一化、残差连接等缓解)。监督学习:需标注数据训练,依赖损失函数的梯度计算。
2025-05-14 11:18:46
977
原创 YOLO目标检测算法评估标准
不同类型的模型,评估指标各有侧重。分类模型中,准确率反映预测正确的整体比例;精确率关注预测正例中实际正例的占比;召回率衡量实际正例被正确预测的程度;F1 值综合精确率与召回率,适合样本不均衡场景。回归模型里,均方误差计算预测值与真实值误差平方的均值,能体现平均差异;平均绝对误差以误差绝对值平均,对异常值敏感度低;聚类模型中,轮廓系数综合凝聚度和分离度,值近 1 代表聚类佳。那么我们今天学习的YOLO目标检测模型使用什么指标评估模型的效果。
2025-05-10 13:59:47
1370
原创 YOLO目标检测算法
YOLO(You Only Look Once)是一种基于深度学习的目标检测算法,由Joseph Redmon等人于2016年提出。它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位置。YOLO算法将输入图像分成SxS个网格,每个网格负责预测该网格内是否存在目标以及目标的类别和位置信息。此外,YOLO算法还采用了多尺度特征融合的技术,使得算法能够在不同尺度下对目标进行检测。
2025-05-09 20:53:07
1164
原创 神经网络—感知器、多层感知器
感知器(Perceptron)是神经网络发展历程中的基础模型,由美国科学家 Frank Rosenblatt 在 1957 年提出。它模拟了生物神经元的工作方式,是构建更复杂神经网络的基石。感知器虽然是神经网络的基础,但它存在一定的局限性:只能处理线性可分问题:感知器只能对线性可分的数据进行分类,对于线性不可分的数据(如异或问题),感知器无法收敛到一个正确的解。缺乏隐藏层:简单感知器没有隐藏层,这限制了它的表达能力,无法处理复杂的非线性映射。
2025-05-08 21:39:31
1457
1
原创 深度学习-神经网络参数优化的约束与迭代策略
在深度学习技术迅猛发展的当下,神经网络凭借多层非线性变换的强大表征能力,在图像识别、自然语言处理、自动驾驶等领域实现了突破性应用。然而,随着模型复杂度的不断提升(如千亿参数的 Transformer、数百层的 ResNet),训练过程面临两大核心挑战:过拟合风险加剧与优化效率瓶颈。一方面,复杂模型对训练数据的记忆能力远超泛化能力,导致在未知数据上表现不佳;另一方面,非凸优化空间中梯度消失、局部最优等问题,使得传统优化算法难以高效收敛。
2025-05-01 20:02:32
1623
1
原创 神经网络—损失函数
损失函数在神经网络中充当核心导航者,通过量化预测与真实值的差异,为模型训练明确优化目标(如最小化误差)。它不仅评估当前性能,还通过反向传播计算梯度,指导参数调整方向,确保任务适配(如分类用交叉熵、回归用均方误差),并可通过正则化项控制模型复杂度,防止过拟合,是驱动整个学习过程的关键机制。损失函数在神经网络中反映的是模型预测结果与真实标签之间的差异程度,损失函数将模型的预测(如分类概率、回归值)与真实标签(Ground Truth)的差异转化为数值形式。
2025-05-01 16:36:01
1506
原创 神经网络入门
神经网络入门是理解人工智能的核心基础,它通过模拟人脑神经元的工作方式,构建多层连接的数学模型,学习从数据中提取特征并进行预测。简单来说,神经网络由输入层接收数据(如图像或文本),经过隐藏层逐层加权计算和非线性激活,最终由输出层给出结果(如分类或预测)。入门可从感知机、激活函数、反向传播等基础概念入手,逐步掌握其在图像识别、自然语言处理等场景的应用逻辑。神经网络的基本结构是由输入层接收数据,通过隐藏层中的加权连接和激活函数进行非线性变换,最终由输出层生成预测结果的多层互联节点网络。
2025-05-01 11:27:43
1008
原创 深度学习的介绍
深度学习是机器学习的重要分支,它基于深层神经网络架构(如卷积神经网络、循环神经网络等),通过多层非线性变换自动从海量数据中学习抽象的特征表示,无需人工手动设计特征,从而实现对复杂数据(如图像、语音、文本等)的分类、预测、生成等任务。其发展源于人工神经网络的研究,2006 年后随着计算能力提升和数据量增长逐步兴起,在计算机视觉、自然语言处理、语音识别等领域取得突破性成果,具备处理非线性问题的强大能力,但也面临依赖大量数据与算力、模型可解释性较弱等挑战。
2025-05-01 10:22:16
1367
原创 OpenCv高阶(十)——光流估计
在计算机视觉领域,光流估计是捕捉图像序列中像素点运动信息的核心技术。它描述了图像中每个像素点在相邻帧间的运动方向和速度,能从静态图像帧中解析出动态变化。光流估计基于像素亮度不变和运动平滑两个关键假设,通过数学建模解算出像素运动场,为视频分析、目标跟踪等任务提供基础。OpenCV 集成了稀疏光流、稠密光流等计算方法,广泛应用于无人机避障、电影特效等场景。接下来,我们将深入解析光流估计原理、OpenCV 函数使用及实战应用,探索这项技术的奥秘。
2025-04-25 22:17:56
810
1
原创 OpenCv高阶(九)——背景建模
场景需求推荐算法核心参数调优固定摄像头,静态背景GMG、单高斯模型动态背景(如树叶、水流)KNN、ViBeK=50radius=20(ViBe)实时性优先(嵌入式设备)ViBe、简化 MOG2复杂光照变化CNT、MOG2, 低学习率(0.001)多模态背景(周期性运动)GMM(K=3~5)增加高斯分布数量,动态调整背景比例阈值背景建模是视频分析的基石,其核心价值在于平衡模型鲁棒性与计算效率。
2025-04-25 20:37:11
1205
原创 《CBOW 词向量转化实战:让自然语言处理 “读懂” 文字背后的含义》
在自然语言处理领域,让计算机理解人类语言的语义一直是研究难点。传统的独热编码等词表示方法,仅能孤立标识单词,无法体现词间语义联系。词向量转换与词嵌入技术的诞生打破了这一困局。它们将离散单词映射为连续向量,挖掘单词间语义关联,把单词嵌入低维空间,使语义相近的词自然聚类。如今,这项技术已深度融入文本分类、机器翻译等任务,成为 NLP 模型理解语义的核心基础。接下来,我们将深入解析其原理、方法及应用。One-Hot 编码(独热编码)是一种将离散型分类变量(如文字、符号、类别标签)转换为数值型向量的方法。
2025-04-24 22:05:11
1360
原创 OpenCv高阶(十一)——物体跟踪
物体跟踪是在视频序列或图像流中持续监测和定位特定物体的过程。通过分析相邻帧之间物体的特征和位置变化,实现对物体运动的跟踪。1、BOOSTING 跟踪器原理:基于 AdaBoost 算法,通过迭代训练多个弱分类器并组合成强分类器。在跟踪过程中,不断利用样本更新分类器,以区分目标和背景。特点:精度较低,在目标外观变化、光照变化或存在遮挡时,容易丢失目标。计算速度较慢,实时性较差。对目标外观变化的适应性较弱。适用场景:适用于目标外观相对稳定、光照变化小且对精度要求不高的简单场景。
2025-04-24 13:33:31
1072
原创 《深度神经网络之数据增强、模型保存、模型调用、学习率调整》
在深度学习的探索之旅中,图像识别模型的训练与应用绝非一蹴而就,它需要一系列精细的技术手段保驾护航。数据增强作为扩充数据集的 “魔法”,通过多样化的变换策略,为模型提供更丰富的学习素材,有效缓解过拟合问题;模型保存与调用则像是搭建起知识传承的桥梁,让训练成果得以复用与迁移,极大提高开发效率;而学习率调整堪称训练过程的 “调速器”,精准把控模型参数的更新步长,决定着模型能否快速且稳定地收敛到最优解。本章将深入剖析这些关键技术,揭开它们如何协同发力,推动图像识别模型从训练走向实际应用的神秘面纱。
2025-04-23 20:38:32
1403
原创 《从卷积核到数字解码:CNN 手写数字识别实战解析》
传统方法(如 SVM、KNN)依赖人工设计特征(如 HOG、SIFT、几何矩),需专家经验且泛化能力有限;位置与尺度变化:数字在图像中的位置(偏上 / 偏下)、大小可能不一致(如 MNIST 数据集中数字存在轻微平移)。手写风格多样性:不同人书写的数字(如 “3” 可能有开口或闭口)、笔画粗细、倾斜角度差异大。噪声与形变:实际场景中可能存在笔画断裂、污渍等噪声,或扫描时的图像模糊。可以看到经过20轮的训练模型的正确率为96.91%。10、调用训练和测试的函数,完成训练一次测试一次。7、定义模型训练的函数。
2025-04-23 13:26:07
352
原创 《剥开卷积神经网络CNN的 “千层酥”:从基础架构到核心算法》
CNN 的灵感最初源于生物学研究。生物学家休博尔和维瑟尔在探索猫视觉皮层时发现,皮层细胞存在精妙构造,每个细胞只对视觉输入空间的特定小区域 “情有独钟”,这个特殊区域就叫感受野。受此启发,科研人员开始构建模拟视觉处理的神经网络模型。1998 年,纽约大学的 Yann Lecun 推出了 LeNet-5,正式提出卷积神经网络。它本质上是多层感知机(MLP)的 “升级版”,但独特之处在于采用了局部连接和权值共享策略。打个比方,传统神经网络就像一个 “事事亲力亲为” 的工作者,每个节点都要处理所有输入信息;
2025-04-22 21:45:55
1027
原创 OpenCv高阶(七)——图像拼接
在做opencv项目时,如果想显示一张图片,总会使用到cv2.imshow()和cv2.waitKey()这两个函数,因此,为了方便将该功能封装成一个小的函数方便使用。
2025-04-22 19:27:18
2053
原创 OpenCv高阶(六)——图像的透视变换
透视变换是将图像从一个视平面投影到另一个视平面的几何变换,用于解决图像的透视畸变问题(如近大远小的视觉效果),或实现视角转换(如从倾斜图像恢复正视图)。核心目标:通过 4 组对应点(原图像与目标图像中的坐标对),计算单应性矩阵(Homography Matrix),将任意四边形区域映射为矩形(或其他四边形),实现视角校正或投影变换。应用场景:文档扫描校正、无人机航拍图像视角调整、增强现实(AR)中的虚拟物体叠加、目标检测中的视角归一化等。
2025-04-16 16:05:25
1683
原创 OpenCv高阶(五)——SIFT特征提取
SIFT 是特征提取领域的标杆算法,其核心优势在于尺度和旋转不变性,适用于复杂场景的图像匹配和识别。尽管存在计算速度和专利问题,但其在学术研究和工业级应用中仍被广泛使用。通过合理调整的参数,可在特征数量和质量之间取得平衡,满足不同场景的需求。实际应用中,若需实时性,可考虑 ORB 等轻量算法;若追求精度,SIFT 仍是首选之一。
2025-04-16 14:40:26
1058
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人