李沐动手学
幸运的悦子
这个作者很懒,什么都没留下…
展开
-
李沐动手学视频笔记-计算机视觉-目标检测
锚框:大多数目标检测是基于锚框:1.提出多个锚框(边缘框)2.预测锚框中是否含有关注物体3.如果含有关注物体,进行偏移,调整锚框到真实边框IoU交并比:计算两个框之间的相似度。取值范围0-1,0代表无重叠,1代表重合。原创 2022-12-23 21:48:00 · 347 阅读 · 0 评论 -
李沐动手学视频笔记-26 网络中的网络NiN
NiN架构:1.无全连接层2.交替使用NiN块和步幅为2的最大池化层,逐步减小高宽和增大通道数3.最后使用全局平均池化层得到输出。输入通道数是类别数,池化核大小与输入矩阵大小相同(池化不改变通道数)原创 2022-12-18 18:35:41 · 96 阅读 · 0 评论 -
李沐动手学视频笔记-21 卷积层里的多输入多输出通道,22 池化层,23 LeNet
总结:1.输出通道数是卷积层的超参数2.每个输入通道都有独立的二维卷积核,所有通道结果相加得到输出通道结果3.每个输出通道有独立的三位卷积核原创 2022-12-17 12:17:07 · 306 阅读 · 0 评论 -
李沐动手学视频笔记-20卷积层里的填充和步幅
填充的目的:避免每次卷积都使数据大小减小,导致无法进行更深层次的卷积。填充的操作:在数据周围添加额外的行和列,是的输出大小达到我们想要的结果(比如得到更大的输出 )。步幅的目的:较快速度的减小数据尺寸。步幅的操作:控制卷积核每次移动的大小。原创 2022-12-16 20:03:03 · 180 阅读 · 0 评论 -
李沐动手学视频笔记-19卷积层
图片分类两个原则:平移不变性(识别器不会因为像素位置而发生改变),局部性(不需要看到完整部分,只要看部分)原创 2022-12-16 17:02:01 · 247 阅读 · 0 评论 -
李沐动手学视频笔记及知识补充-17使用和购买GPU
李沐动手学视频笔记及知识补充-17使用和购买GPU原创 2022-12-13 20:00:34 · 214 阅读 · 0 评论 -
李沐动手学视频学习笔记和知识补充-16神经网络基础
我们可以通过基本层类设计自定义层。这允许我们定义灵活的新层,其行为与深度学习框架中的任何现有层不同。在自定义层定义完成后,我们就可以在任意环境和网络架构中调用该自定义层。层可以有局部参数,这些参数可以通过内置函数创建。原创 2022-12-13 19:20:42 · 122 阅读 · 0 评论