李沐动手学视频笔记-21 卷积层里的多输入多输出通道,22 池化层,23 LeNet

本文介绍了卷积神经网络(CNN)中的多通道卷积计算,每个输入通道对应独立的卷积核,输出通道通过相加得到。1*1卷积层用于多通道信息融合。池化层的主要目的是缓解位置敏感性,最大池化和平均池化各有特点。LeNet作为经典CNN,展示了先用卷积层学习图像特征,再用全连接层转换到类别空间的思路。此外,还提到了enumerate()函数和整数除法在Python中的应用。
摘要由CSDN通过智能技术生成

 多通道卷积计算:分别与各自层的卷积核卷积,然后就相加得到结果

 可知:输入通道又多少层卷积核就需要有多少通道,无论输入有多少通道,一次卷积都得到单通道。一个输出通道对应的核可以得到一个输出通道,多个对应的核可以得到多个输出通道,合在一起就得到了多通道输出。

为什么要得到多通道输出?

答:每个输出通道可以识别特定模式。卷积核可以识别并组合输入中的模式

特殊的卷积层--1*1的卷积层:只能对多通道输入信息进行融合

 总结:

1.输出通道数是卷积层的超参数

2.每个输入通道都有独立的二维卷积核,所有通道结果相加得到输出通道结果

3.每个输出通道有独立的三位卷积核

22 池化层

池化的目的:缓解卷积层对位置的敏感性。有时候像素的微小误差就会导致卷积结果产生变化,而池化就是减小这种误差,减小个别像素的改变对最终结果的影响。

注意:池化也有填充和步幅,但是池化与卷积的区别是没有学习参数,并且作用于多输入通道时不进行多通道融合。输出通道与输入通道相同。

最大池化与平均池化:最大池化层可以放大窗口中信号较强的部分,平均池化层将最大替换成平均使整体较为柔和。

23 经典卷积神经网络 LeNet

MNIST数据集,手写数字数据集

总结:

1.leNet是早期成功的神经网路

2.先使用卷积层来学习图片空间信息

3.然后使用全连接层来转换到类别空间

补充

enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。

python中“//”是一个算术运算符,表示整数除法,它可以返回商的整数部分(向下取整)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值