多通道卷积计算:分别与各自层的卷积核卷积,然后就相加得到结果
可知:输入通道又多少层卷积核就需要有多少通道,无论输入有多少通道,一次卷积都得到单通道。一个输出通道对应的核可以得到一个输出通道,多个对应的核可以得到多个输出通道,合在一起就得到了多通道输出。
为什么要得到多通道输出?
答:每个输出通道可以识别特定模式。卷积核可以识别并组合输入中的模式
特殊的卷积层--1*1的卷积层:只能对多通道输入信息进行融合
总结:
1.输出通道数是卷积层的超参数
2.每个输入通道都有独立的二维卷积核,所有通道结果相加得到输出通道结果
3.每个输出通道有独立的三位卷积核
22 池化层
池化的目的:缓解卷积层对位置的敏感性。有时候像素的微小误差就会导致卷积结果产生变化,而池化就是减小这种误差,减小个别像素的改变对最终结果的影响。
注意:池化也有填充和步幅,但是池化与卷积的区别是没有学习参数,并且作用于多输入通道时不进行多通道融合。输出通道与输入通道相同。
最大池化与平均池化:最大池化层可以放大窗口中信号较强的部分,平均池化层将最大替换成平均使整体较为柔和。
23 经典卷积神经网络 LeNet
MNIST数据集,手写数字数据集
总结:
1.leNet是早期成功的神经网路
2.先使用卷积层来学习图片空间信息
3.然后使用全连接层来转换到类别空间
补充
enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。
python中“//”是一个算术运算符,表示整数除法,它可以返回商的整数部分(向下取整)。