梯度下降Python实现

梯度下降

  • 公式
    在这里插入图片描述
    梯度下降就是根据当下所在的位置寻找一个最陡峭的地方往下,在这一点的切线上我认为有两个方向,一个向下一个向上,把向下的方向分为水平方向的向量和垂直向下的向量,水平方向的向量的长度就是要跨越的距离,与η有关(η不宜太大,不然会错过最陡峭的地方,也不宜太小),水平跨越后的结果就是上面的公式。(梯度上升就是把向上的方向分解)
    在这里插入图片描述

(图画的稍微潦草看懂即可)如何求最陡峭的地方就要用到数学上的微分了。
1、单微分:
(d(x^2))/dx=2x;
2、多微分:
在这里插入图片描述
梯度一般来说就是有多变量的微分函数,在这一点上也可以分为两个方向的向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向。

代码及公式推导(参考自网上博客)

下面我们将用python实现一个简单的梯度下降算法。
在这里插入图片描述
我们将用梯度下降法来拟合出这条直线!

首先,我们需要定义一个代价函数,在此我们选用均方误差代价函数
在这里插入图片描述
此公示中

  • m是数据集中点的个数
  • 1/2是一个常量,这样是为了在求梯度的时候,二次方乘下来就和这里的1/2抵消了,自然就没有多余的常数系数,方便后续的计算,同时对结果不会有影响
  • y 是数据集中每个点的真实y坐标的值
  • h 是我们的预测函数,根据每一个输入x,根据Θ 计算得到预测的y值,即

在这里插入图片描述
我们可以根据代价函数看到,代价函数中的变量有两个,所以是一个多变量的梯度下降问题,求解出代价函数的梯度,也就是分别对两个变量进行微分
在这里插入图片描述
明确了代价函数和梯度,以及预测的函数形式。我们就可以开始编写代码了。但在这之前,需要说明一点,就是为了方便代码的编写,我们会将所有的公式都转换为矩阵的形式,python中计算矩阵是非常方便的,同时代码也会变得非常的简洁。

为了转换为矩阵的计算,我们观察到预测函数的形式
在这里插入图片描述
我们有两个变量,为了对这个公式进行矩阵化,我们可以给每一个点x增加一维,这一维的值固定为1,这一维将会乘到Θ0上。这样就方便我们统一矩阵化的计算
在这里插入图片描述
然后我们将代价函数和梯度转化为矩阵向量相乘的形式在这里插入图片描述
接下来编写代码

#首先,我们需要定义数据集和学习率
from numpy import *
import matplotlib.pyplot as plt
# 数据集大小 即20个数据点
m = 20
# x的坐标以及对应的矩阵
X0 = ones((m, 1))  # 生成一个m行1列的向量,也就是x0,全是1
X1 = arange(1, m+1).reshape(m, 1)  # 生成一个m行1列的向量,也就是x1,从1到m
X = hstack((X0, X1))  # 按照列堆叠形成数组,其实就是样本数据
# 对应的y坐标
Y = array([
    3, 4, 5, 5, 2, 4, 7, 8, 11, 8, 12,
    11, 13, 13, 16, 17, 18, 17, 19, 21
]).reshape(m, 1)
# 步长
alpha = 0.01
#接下来我们以矩阵向量的形式定义代价函数和代价函数的梯度
# 定义代价函数
def cost_function(theta, X, Y):
    diff = dot(X, theta) - Y  # dot() 数组需要像矩阵那样相乘,就需要用到dot()
    return (1/(2*m)) * dot(diff.transpose(), diff)
# 定义代价函数对应的梯度函数
def gradient_function(theta, X, Y):
    diff = dot(X, theta) - Y
    return (1/m) * dot(X.transpose(), diff)
#最后就是算法的核心部分,梯度下降迭代计算
# 梯度下降迭代
def gradient_descent(X, Y, alpha):
    theta = array([1, 1]).reshape(2, 1)
    gradient = gradient_function(theta, X, Y)
    while not all(abs(gradient) <= 1e-5):
        theta = theta - alpha * gradient
        gradient = gradient_function(theta, X, Y)
    return theta
optimal = gradient_descent(X, Y, alpha)
print('optimal:', optimal)
print('cost function:', cost_function(optimal, X, Y)[0][0])

当梯度小于1e-5时,说明已经进入了比较平滑的状态,类似于山谷的状态,这时候再继续迭代效果也不大了,所以这个时候可以退出循环!
运行代码,计算得到的结果如下:

print('optimal:', optimal)
print('cost function:', cost_function(optimal, X, Y)[0][0])
# 根据数据画出对应的图像
def plot(X, Y, theta):
    ax = plt.subplot(111)
    ax.scatter(X, Y, s=20, c="green", marker="s")
    plt.xlabel("X")
    plt.ylabel("Y")
    x = arange(0, 22, 0.01)  # x的范围
    y = theta[0] + theta[1]*x
    ax.plot(x, y)
    plt.show()
plot(X1, Y, optimal)

运行结果

在这里插入图片描述
在这里插入图片描述

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值