这是UFLDL关于softmax回归的练习题。
练习主要编写softmaxCost.m和softmaxPredict.m两个文件。
softmaxCost.m
function [cost, grad] = softmaxCost(theta, numClasses, inputSize, lambda, data, labels)
% numClasses - the number of classes
% inputSize - the size N of the input vector
% lambda - weight decay parameter
% data - the N x M input matrix, where each column data(:, i) corresponds to
% a single test set
% labels - an M x 1 matrix containing the labels corresponding for the input data
%
% Unroll the parameters from theta
theta = reshape(theta, numClasses, inputSize);
numCases = size(data, 2);
groundTruth = full(sparse(labels, 1:numCases, 1));
%cost = 0;
%thetagrad = zeros(numClasses, inputSize);
%% ---------- YOUR CODE HERE --------------------------------------
% Instructions: Compute the cost and gradient for softmax regression.
% You need to compute thetagrad and cost.
% The groundTruth matrix might come in handy.
M = theta * data;
M = bsxfun(@minus, M, max(M, [], 1));
M = exp(M);
M = bsxfun(@rdivide, M, sum(M));
thetagrad = (groundTruth-M)*data'/(-numCases) + lambda*theta;
cost = groundTruth(:)'*log(M(:))/(-numCases) + sum(theta(:).^2)*lambda/2;
% ------------------------------------------------------------------
% Unroll the gradient matrices into a vector for minFunc
grad = [thetagrad(:)];
end
softmaxPredict.m
function [pred] = softmaxPredict(softmaxModel, data)
% softmaxModel - model trained using softmaxTrain
% data - the N x M input matrix, where each column data(:, i) corresponds to
% a single test set
%
% Your code should produce the prediction matrix
% pred, where pred(i) is argmax_c P(y(c) | x(i)).
% Unroll the parameters from theta
theta = softmaxModel.optTheta; % this provides a numClasses x inputSize matrix
pred = zeros(1, size(data, 2));
%% ---------- YOUR CODE HERE --------------------------------------
% Instructions: Compute pred using theta assuming that the labels start
% from 1.
%numClasses = softmaxModel.numClasses;
%inputSize = softmaxModel.inputSize;
%theta = reshape(theta, numClasses, inputSize);
M = theta*data;
M = bsxfun(@minus,M,max(M,[],1));
M = exp(M);
M = bsxfun(@rdivide,M,sum(M));
[maxv,pred] = max(M);
% ---------------------------------------------------------------------
end
迭代100次,Accuracy: 92.640%。
参考:
[1]http://deeplearning.stanford.edu/wiki/index.php/Softmax回归
[2]http://deeplearning.stanford.edu/wiki/index.php/Exercise:Softmax_Regression
[3]http://www.cnblogs.com/tornadomeet/archive/2013/03/23/2977621.html【参考此文章修改了部分实现,加快了训练速度】