题目大意
给定
k
,定义优美的树:
∙
非叶节点需有两个儿子
∙
不能够变换成为
k−
左偏树
所谓
k−
左偏树是指一棵具有
k
个叶子的二叉树,每个非叶子节点的右儿子均为叶子且均有左儿子。
所谓的变换指的是经过若干次如下两种变换:
∙
用一个节点的某个儿子为根的子树代替该节点为根的子树。
现在你要求叶子树分别为
1
至
答案对
109+9
取模。
0≤n,k≤5×103
题目分析
可以发现第三条限制实际上是指根节点到任意一个节点路径上的左儿子个数不能大于等于
k−1
。
n
个叶子的限制很难处理,考虑将叶子全部去掉,那就会剩下一棵具有
考虑
dp
,这里的思路非常精妙:考虑树的先序遍历,令
fi,j
表示填到先序遍历第
i
个点,当前点到根路径上经过了
那么下一个点可以是它的左儿子和右儿子,也可以是这个点祖先的儿子。因为我们是先序遍历,因此这个点的祖先都有左儿子了,并且显然只有
j+1
个祖先右儿子有剩余,因此我们就可以转移到
fi+1,0...min(j+1,k−3)
。这个打个
tag
然后扫一遍后缀和就好了。
时间复杂度
O(nk)
。
代码实现
#include <iostream>
#include <cstdio>
using namespace std;
const int P=1000000009;
const int N=5005;
int f[N][N];
int n,K,ans;
int main()
{
freopen("shu.in","r",stdin),freopen("shu.out","w",stdout);
scanf("%d%d",&K,&n),K-=3;
f[0][0]=f[1][0]=1;
for (int i=1;i<n;i++)
{
for (int j=K;j>=0;j--) (f[i][j]+=f[i][j+1])%=P;
for (int j=0;j<=K;j++)
if (f[i][j])
if (j+1<=K) (f[i+1][j+1]+=f[i][j])%=P;
else (f[i+1][j]+=f[i][j])%=P;
}
for (int i=K;i>=0;i--) (f[n][i]+=f[n][i+1])%=P;
for (int i=1;i<=n;i++)
{
ans=0;
for (int j=0;j<=K;j++) (ans+=f[i-1][j])%=P;
printf("%d\n",ans);
}
fclose(stdin),fclose(stdout);
return 0;
}