[JZOJ4951]优美的树

题目大意

给定 k ,定义优美的树:
这是一棵有根二叉树
非叶节点需有两个儿子
不能够变换成为 k 左偏树
所谓 k 左偏树是指一棵具有 k 个叶子的二叉树,每个非叶子节点的右儿子均为叶子且均有左儿子。
所谓的变换指的是经过若干次如下两种变换:
删去一个节点的两个儿子
用一个节点的某个儿子为根的子树代替该节点为根的子树。
现在你要求叶子树分别为 1 n的优美的树的个数。
答案对 109+9 取模。

0n,k5×103


题目分析

可以发现第三条限制实际上是指根节点到任意一个节点路径上的左儿子个数不能大于等于 k1
n 个叶子的限制很难处理,考虑将叶子全部去掉,那就会剩下一棵具有n1个节点的二叉树,根到儿子路径上左儿子个数不能大于等于 k2
考虑 dp ,这里的思路非常精妙:考虑树的先序遍历,令 fi,j 表示填到先序遍历第 i 个点,当前点到根路径上经过了j个左儿子的方案数。
那么下一个点可以是它的左儿子和右儿子,也可以是这个点祖先的儿子。因为我们是先序遍历,因此这个点的祖先都有左儿子了,并且显然只有 j+1 个祖先右儿子有剩余,因此我们就可以转移到 fi+1,0...min(j+1,k3) 。这个打个 tag 然后扫一遍后缀和就好了。
时间复杂度 O(nk)


代码实现

#include <iostream>
#include <cstdio>

using namespace std;

const int P=1000000009;
const int N=5005;

int f[N][N];
int n,K,ans;

int main()
{
    freopen("shu.in","r",stdin),freopen("shu.out","w",stdout);
    scanf("%d%d",&K,&n),K-=3;
    f[0][0]=f[1][0]=1;
    for (int i=1;i<n;i++)
    {
        for (int j=K;j>=0;j--) (f[i][j]+=f[i][j+1])%=P;
        for (int j=0;j<=K;j++)
            if (f[i][j])
                if (j+1<=K) (f[i+1][j+1]+=f[i][j])%=P;
                else (f[i+1][j]+=f[i][j])%=P;
    }
    for (int i=K;i>=0;i--) (f[n][i]+=f[n][i+1])%=P;
    for (int i=1;i<=n;i++)
    {
        ans=0;
        for (int j=0;j<=K;j++) (ans+=f[i-1][j])%=P;
        printf("%d\n",ans);
    }
    fclose(stdin),fclose(stdout);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值