[竞赛图判定定理]兰道定理(Landau's Theorem)介绍及其一种证明

前言

竞赛图(tournament)是一个定义在有向图上的概念,顾名思义,它可以想象成 n 个人两两对决,赢得向输的连边,其实就是给一副完全图的无向边定了方向。
竞赛图有很多十分优美的性质,比如说在之前的[JZOJ5061]最长路径中我就介绍了其关于曼哈顿路径的一些性质。
在这里,我们要介绍一个判定竞赛图的优美定理——兰道定理(Landau’s Theorem),这个定理在1953年被Landau, H.G.证明。目前,这个定理在国内竞赛圈还不算普及,虽然在部分oj上有少数用到这个定理的题目(如:HDU5873),但是在国内网站上还没有找到任何证明。


定理

定义

定义一个竞赛图的比分序列(score sequence),是把竞赛图的每一个点的出度从小到大排列得到的序列。

定理内容

一个长度为 n 的序列 s=(s1s2,...sn) n1 ,是合法的比分序列当且仅当:

1kn,i=1ksi(k2)

k=n 时这个式子必须取等号。

定理证明

首先这个定理的必要性是显然的:即任一 n 阶竞赛图都满足这个条件。
现在我们只需要证明这个定理的充分性。
在这里,我们的证明是一个构造算法。思路是从一个一般竞赛图开始,每次改变两条边的方向,构造出一个比分序列是给定序列的竞赛图。
假设有一个一个满足定理条件的序列 s 。现在我们构造一个及其平凡的 n 阶竞赛图 Tn ,这个竞赛图的第 i 个节点向所有 j<i j 节点都连有向边,因此其比分序列是 (0,1,...,n1) ,我们要从这个平凡竞赛图开始构造。
考虑当前构造到了一个竞赛图 U ,它的比分序列 u 满足

1kn,i=1ksii=1kui

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值