[JZOJ5094]鸽子

题目大意

给定平面上的 n 个关键点,以及m个待选点。
你要从 m 个待选点中选择尽量少的点来观察所有的关键点。一个关键点能被观察到,当且仅当它在一个选择了的待选点上,或者在两个选择了的待选点的线段上,抑或是在三个待选点围成的三角形内。
输出最少要选的待选点数,无解输出1

n105,m500 ,坐标绝对值不超过 109


题目分析

显然,我选择一些待选点,它们能观察到到的区域就是它们的凸包。
那么我现在相当于要选择尽量少的点,使得它们的凸包包含了所有关键点。
利用凸的定义进一步转化:选择尽量少的点,使得它们的凸包包含了关键点的凸包。
这个怎么求呢?考虑两个待选点之间的有向边,如果凸包在这条有向边的逆时针方向,我就连这条边。那么最后我对这个图求一个长度最小的简单环就是答案了。这个可以使用 Floyd O(n3) 的时间复杂度内解决。
现在考虑怎么连边,枚举两个待选点然后在凸包上判断好像不太可做。那么考虑枚举一个待选点,然后 O(n) 求出其在凸包上的两条切线,就可以得出有向边的可行角度区间,接着再枚举另一个待选点直接叉积判断就好了。
时间复杂度 O(m3+nm+nlogn)


代码实现

#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cfloat>
#include <cctype>
#include <cmath>

using namespace std;

int read()
{
    int x=0,f=1;
    char ch=getchar();
    while (!isdigit(ch)) f=ch=='-'?-1:f,ch=getchar();
    while (isdigit(ch)) x=x*10+ch-'0',ch=getchar();
    return x*f;
}

typedef long long db;

const int N=100050;
const int M=505;

struct P
{
    db x,y;

    P(db x_=0.,db y_=0.){x=x_,y=y_;}

    P operator+(P const p)const{return P(x+p.x,y+p.y);}
    P operator-(P const p)const{return P(x-p.x,y-p.y);}
    P operator*(db const k)const{return P(x*k,y*k);}

    db operator^(P const p)const{return x*p.y-y*p.x;}
}mon[M],pts[N];

struct poly
{
    P p[N];
    int tot;

    bool inside(P pts)
    {
        bool ret=0;
        for (int i=1;i<tot;++i) ret^=(p[i].y-pts.y>=0&&p[i+1].y-pts.y<0)||(p[i].y-pts.y<0&&p[i+1].y-pts.y>=0);
        return ret;
    }
}ch;

bool cmp1(int x,int y){return pts[y].x-pts[x].x>0||pts[x].x==pts[y].x&&pts[y].y-pts[x].y>0;}
bool cmp2(int x,int y){return pts[x].x-pts[y].x>0||pts[x].x==pts[y].x&&pts[x].y-pts[y].y>0;}

int kth[N],stack[N];
bool able[M][M];
int f[M][M];
int n,m,ans,top;

void update(int &x,int y){x=x<y?x:y;}

void Convex_Hull()
{
    for (int i=1;i<=n;++i) kth[i]=i;
    sort(kth+1,kth+1+n,cmp1);
    top=0;
    for (int i=1;i<=n;++i)
    {
        P p=pts[kth[i]];
        for (;top>1&&((pts[stack[top]]-pts[stack[top-1]])^(p-pts[stack[top-1]]))<=0;--top);
        stack[++top]=kth[i];
    }
    for (int i=1;i<=top;++i) ch.p[++ch.tot]=pts[stack[i]];
    for (int i=1;i<=n;++i) kth[i]=i;
    sort(kth+1,kth+1+n,cmp2);
    top=0;
    for (int i=1;i<=n;++i)
    {
        P p=pts[kth[i]];
        for (;top>1&&((pts[stack[top]]-pts[stack[top-1]])^(p-pts[stack[top-1]]))<=0;--top);
        stack[++top]=kth[i];
    }
    for (int i=2;i<=top;++i) ch.p[++ch.tot]=pts[stack[i]];
}

void pre()
{
    for (int i=1;i<=m;++i)
    {
        if (ch.inside(mon[i])) continue;
        P v1=ch.p[1]-mon[i],v2=ch.p[1]-mon[i];
        for (int j=2;j<=ch.tot;++j)
        {
            P v=ch.p[j]-mon[i];
            if (!v.x&&!v.y) continue;
            if (!v1.x&&!v1.y||(v^v1)>0) v1=v;
            if (!v2.x&&!v2.y||(v2^v)>0) v2=v;
        }
        v2=v2*(-1.0);
        for (int j=1;j<=m;++j)
        {
            P v=mon[j]-mon[i];
            if (i!=j) able[i][j]=(v^v1)>=0&&(v2^v)>=0;
        }
    }
}

void dp()
{
    for (int i=1;i<=m;++i)
        for (int j=1;j<=m;++j)
            f[i][j]=m*2;
    for (int i=1;i<=m;++i)
        for (int j=1;j<=m;++j)
            if (able[i][j]) f[i][j]=1;
    for (int k=1;k<=m;++k)
        for (int i=1;i<=m;++i)
            for (int j=1;j<=m;++j)
                update(f[i][j],f[i][k]+f[k][j]);
    ans=m*2;
    for (int i=1;i<=m;++i) update(ans,f[i][i]);
    if (ans==m*2) ans=-1;
}

int main()
{
    freopen("pigeon.in","r",stdin),freopen("pigeon.out","w",stdout);
    n=read(),m=read();
    for (int i=1,x,y;i<=n;++i) x=read(),y=read(),pts[i]=P(x,y);
    Convex_Hull();
    for (int i=1,x,y;i<=m;++i) x=read(),y=read(),mon[i]=P(x,y);
    pre(),dp(),printf("%d\n",ans);
    fclose(stdin),fclose(stdout);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值