题意描述:
输入一个整型数组,数组里有正数也有负数。数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。 要求时间复杂度为O(n)。
1 <= arr.length <= 10^5
-100 <= arr[i] <= 100
示例:
输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
解题思路:
代码:
Python 方法一: 动态规划。
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
ret = nums[0]
pre = 0
for x in nums:
if pre <= 0: // 往者皆可抛,以上一个数字为结尾的子数组的和已经小于等于0了,重新开始
pre = x
else:
pre += x // 继续累积
if pre > ret: // 从 n 个“最大值”中挑出一个最大的
ret = pre
return ret
Java 方法一: 动态规划。
class Solution {
public int maxSubArray(int[] nums) {
int ret = nums[0];
int pre = 0;
for(int i=0; i<nums.length; ++i){
if(pre <= 0){
pre = nums[i];
}else{
pre += nums[i];
}
if(pre > ret){
ret = pre;
}
}
return ret;
}
}
易错点:
- 一些测试用例:
[-2,1,-3,4,-1,2,1,-5,4]
[1,2,3,4,3,4]
[-2,-1,-2]
[1,-1]
[2]
- 答案:
6
17
-1
1
2
总结: