题意描述:
有 N 件物品和一个容量是 V 的背包,背包能承受的最大重量是 M。
每件物品只能用一次。体积是 vi,重量是 mi,价值是 wi。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,总重量不超过背包可承受的最大重量,且价值总和最大。输出最大价值。
输入格式
第一行三个整数,N,V,M,用空格隔开,分别表示物品件数、背包容积和背包可承受的最大重量。
接下来有 N 行,每行三个整数 vi,mi,wi,用空格隔开,分别表示第 i 件物品的体积、重量和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N≤1000
0<V,M≤100
0<vi,mi≤100
0<wi≤1000
示例:
4 5 6
1 2 3
2 4 4
3 4 5
4 5 6
8
解题思路:
Alice: 这题居然是中等难度 ?
Bob:咋了,你觉得应该是困难还是简单 ?
Alice:我看这题就是 01 背包加了一个维度,相当了多了一种体积。这个直接把原来 01 背包的代码扩展一下应该就行了吧。
Bob:考虑第 i 个物品,体积是 j,重量是 k 的情况,dp[i][j][k] = max( dp[i-1][j][k], dp[i-1][j-vi][k-mi] + wi)
,其实还是第 i 个物品选不选,然后直接套一维 01 背包的状态压缩,从最大体积,最大重量往小计算,搞一个二维数组应该就行了。
Alice: 会超时吗 ?
Bob: 三重循环的话,1000 * 100 * 100
大概 10^7
,应该刚好能过。
Alice: 可以试试,而且实际的计算次数应该达不到 10^7
,第 i 个物品实际计算量应该是 (maxVolumn - vi) * (maxWeight - mi)
Bob: 这题应该算是中等偏简单一点吧,迁移扩展一下原来的做法就行了。
代码:
const fs = require('fs');
let buffer = '';
process.stdin.on('readable', () => {
const chunk = process.stdin.read();
if (chunk) {
buffer += chunk.toString()
}
});
// 输入的字符串转换为数字
const convert = (inputString) => {
const list = [];
inputString.split('\n').forEach((line) => {
const tokens = line.split(' ');
list.push(tokens.map(num => parseInt(num, 10)));
});
return list;
}
// 批量调用
const batchCall = (list, solve) => {
// 划分数据
const data = [];
let countAndVolumIndex = 0;
while(countAndVolumIndex < list.length) {
const [count, volum, weight] = list[countAndVolumIndex];
data.push({
volum: volum,
count: count,
weight: weight,
volumAndWeightAndValue: list.slice(countAndVolumIndex + 1, countAndVolumIndex + 1 + count)
});
countAndVolumIndex += count + 1;
}
data.forEach(item => {
if(solve && item && item.count && item.volum && item.weight) {
solve(item.count, item.volum, item.weight, item.volumAndWeightAndValue);
}
});
}
const solve = (count, maxVolum, maxWeight, volumAndWeightAndValue) => {
const dp = [];
for(let i=0; i<maxVolum+10; ++i) {
dp.push(new Array(maxWeight + 10).fill(0));
}
for(let i=0; i<count; ++i){
// 第 i 个物品的体积,重量和价值
const [ivolum, iweight, ivalue] = volumAndWeightAndValue[i];
for(let j=maxVolum; j>=ivolum; --j) {
for(let k=maxWeight; k>=iweight; --k) {
dp[j][k] = Math.max(dp[j][k], dp[j-ivolum][k-iweight] + ivalue);
}
}
}
console.log(dp[maxVolum][maxWeight]);
}
process.stdin.on('end', function() {
batchCall(convert(buffer), solve)
});
参考: