四边形不等式优化详解

废话

这大概是跟斜率优化一样神的东西qwq,但是证明复杂一点,以及似乎用到的题目也少一点,毕竟使用条件有点苛刻。

正题

它用来加速类似这样的 d p dp dp f [ i ] [ j ] = min ⁡ k = i j − 1 { f [ i ] [ k ] + f [ k + 1 ] [ j ] + w ( i , j ) } f[i][j]=\min_{k=i}^{j-1}\{f[i][k]+f[k+1][j]+w(i,j)\} f[i][j]=mink=ij1{f[i][k]+f[k+1][j]+w(i,j)}

每道题 d p dp dp 不一样,不一定都是这种形式,这里只是以这种可能比较经典的作为例子。其中, w ( i , j ) w(i,j) w(i,j) 表示这一步操作的代价(贡献)。

特别的,设 f [ i ] [ i ] = w ( i , i ) = 0 f[i][i]=w(i,i)=0 f[i][i]=w(i,i)=0

以及,虽然这个例子看起来很像区间 d p dp dp,但是四边形不等式优化的使用是不局限于区间 d p dp dp 的。

优化需要经过多步证明,都满足了就可以将这样的 O ( n 3 ) O(n^3) O(n3) 枚举优化到 O ( n 2 ) O(n^2) O(n2),实质上是优化了 k k k 的枚举。

使用步骤

  1. 证明 w w w 满足四边形不等式
  2. 证明 w w w 满足 w ( a , d ) ≥ w ( b , c )   ( a ≤ b ≤ c ≤ d ) w(a,d)\geq w(b,c)~(a\leq b\leq c\leq d) w(a,d)w(b,c) (abcd)
  3. 利用 1 , 2 1,2 1,2 证明 f f f 满足四边形不等式
  4. p ( i , j ) p(i,j) p(i,j) 表示 f [ i ] [ j ] f[i][j] f[i][j] 的最优决策点(也就是最优的 k k k),证明 p ( i , j − 1 ) ≤ p ( i , j ) ≤ p ( i + 1 , j ) p(i,j-1)\leq p(i,j)\leq p(i+1,j) p(i,j1)p(i,j)p(i+1,j)

做完这四步后,根据最后证明出来的这个柿子,对于当前的 i , j i,j i,j,枚举 k k k 时只需要在 p ( i , j − 1 ) p(i,j-1) p(i,j1) p ( i + 1 , j ) p(i+1,j) p(i+1,j) 之间枚举就好,可以证明这样的时间复杂度为 O ( n 2 ) O(n^2) O(n2)(证明最后有)。

由于对于每一题的证明都不一样,所以下面只能讲一些用来帮助证明的定理和推论。

四边形不等式

假如对于任意 a ≤ b ≤ c ≤ d a\leq b\leq c\leq d abcd,满足 w ( a , c ) + w ( b , d ) ≤ w ( b , c ) + w ( a , d ) w(a,c)+w(b,d)\leq w(b,c)+w(a,d) w(a,c)+w(b,d)w(b,c)+w(a,d),那么称 w w w 满足四边形不等式。(务必背下这个柿子qwq)

推论: 假如对于任意 a < c a<c a<c,满足 w ( a , c ) + w ( a + 1 , c + 1 ) ≤ w ( a + 1 , c ) + w ( a , c + 1 ) w(a,c)+w(a+1,c+1)\leq w(a+1,c)+w(a,c+1) w(a,c)+w(a+1,c+1)w(a+1,c)+w(a,c+1),那么 w w w 满足四边形不等式。

证明:

a + 1 < c a+1<c a+1<c,那么有 a < c a<c a<c,则有:
w ( a , c ) + w ( a + 1 , c + 1 ) ≤ w ( a + 1 , c ) + w ( a , c + 1 )    ( 1 ) w(a,c)+w(a+1,c+1)\leq w(a+1,c)+w(a,c+1)~~(1) w(a,c)+w(a+1,c+1)w(a+1,c)+w(a,c+1)  (1)

因为 a + 1 < c a+1<c a+1<c,所以有:
w ( a + 1 , c ) + w ( a + 2 , c + 1 ) ≤ w ( a + 2 , c ) + w ( a + 1 , c + 1 )    ( 2 ) w(a+1,c)+w(a+2,c+1)\leq w(a+2,c)+w(a+1,c+1)~~(2) w(a+1,c)+w(a+2,c+1)w(a+2,c)+w(a+1,c+1)  (2)

( 1 ) ( 2 ) (1)(2) (1)(2)两式相加,消去左右相同的项,得到:
w ( a , c ) + w ( a + 2 , c + 1 ) ≤ w ( a + 2 , c ) + w ( a , c + 1 )    ( 3 ) w(a,c)+w(a+2,c+1)\leq w(a+2,c)+w(a,c+1)~~(3) w(a,c)+w(a+2,c+1)w(a+2,c)+w(a,c+1)  (3)

( 3 ) (3) (3) 式相比 ( 1 ) (1) (1) 式,就是 a + 1 a+1 a+1 都变成了 a + 2 a+2 a+2,以此类推下去,就可以变成任意 a + k a+k a+k,设 b = a + k b=a+k b=a+k,于是有:
w ( a , c ) + w ( b , c + 1 ) ≤ w ( b , c ) + w ( a , c + 1 ) w(a,c)+w(b,c+1)\leq w(b,c)+w(a,c+1) w(a,c)+w(b,c+1)w(b,c)+w(a,c+1)

同理,可以将 c + 1 c+1 c+1 推广到任意 c + k ′ c+k' c+k,设 d = c + k ′ d=c+k' d=c+k,那么就有:
w ( a , c ) + w ( b , d ) ≤ w ( b , c ) + w ( a , d ) w(a,c)+w(b,d)\leq w(b,c)+w(a,d) w(a,c)+w(b,d)w(b,c)+w(a,d)

证毕。


利用这个推论,可以更便捷地进行步骤 1 1 1

步骤 2 2 2 就没啥好讲的了,这个完全因题而异。


步骤 3 3 3 的话以上面的范例 d p dp dp 方程为例证明一波(这个也是因题而异的):

证明的话利用上面的推论,也就是证明对于任意 a < c a<c a<c,都满足 f [ a ] [ c ] + f [ a + 1 ] [ c + 1 ] ≤ f [ a ] [ c + 1 ] + f [ a + 1 ] [ c ] f[a][c]+f[a+1][c+1]\leq f[a][c+1]+f[a+1][c] f[a][c]+f[a+1][c+1]f[a][c+1]+f[a+1][c]

先考虑 a + 1 = c a+1=c a+1=c 的情况,此时有:
f [ a ] [ c ] + f [ a + 1 ] [ c + 1 ] = f [ a ] [ a + 1 ] + f [ a + 1 ] [ a + 2 ] = w ( a , a + 1 ) + w ( a + 1 , a + 2 ) f [ a ] [ c + 1 ] + f [ a + 1 ] [ c ] = f [ a ] [ a + 2 ] + f [ a + 1 ] [ a + 1 ] = f [ a ] [ a + 2 ] f[a][c]+f[a+1][c+1]=f[a][a+1]+f[a+1][a+2]=w(a,a+1)+w(a+1,a+2)\\ f[a][c+1]+f[a+1][c]=f[a][a+2]+f[a+1][a+1]=f[a][a+2] f[a][c]+f[a+1][c+1]=f[a][a+1]+f[a+1][a+2]=w(a,a+1)+w(a+1,a+2)f[a][c+1]+f[a+1][c]=f[a][a+2]+f[a+1][a+1]=f[a][a+2]

f [ a ] [ a + 2 ] f[a][a+2] f[a][a+2] 的决策点只有两个,假如 f [ a ] [ a + 2 ] f[a][a+2] f[a][a+2] 的最优决策点为 a a a,那么
f [ a ] [ a + 2 ] = f [ a ] [ a ] + f [ a + 1 ] [ a + 2 ] + w ( a , a + 2 ) = w ( a + 1 , a + 2 ) + w ( a , a + 2 ) f[a][a+2]=f[a][a]+f[a+1][a+2]+w(a,a+2)=w(a+1,a+2)+w(a,a+2) f[a][a+2]=f[a][a]+f[a+1][a+2]+w(a,a+2)=w(a+1,a+2)+w(a,a+2)

假如最优决策点为 a + 1 a+1 a+1,那么
f [ a ] [ a + 2 ] = f [ a ] [ a + 1 ] + f [ a + 2 ] [ a + 2 ] + w ( a , a + 2 ) = w ( a , a + 1 ) + w ( a , a + 2 ) f[a][a+2]=f[a][a+1]+f[a+2][a+2]+w(a,a+2)=w(a,a+1)+w(a,a+2) f[a][a+2]=f[a][a+1]+f[a+2][a+2]+w(a,a+2)=w(a,a+1)+w(a,a+2)

因为 w w w 满足步骤 2 2 2 中的性质,所以有:
w ( a + 1 , a + 2 ) + w ( a , a + 2 ) ≥ w ( a , a + 1 ) + w ( a + 1 , a + 2 ) w ( a , a + 1 ) + w ( a , a + 2 ) ≥ w ( a , a + 1 ) + w ( a + 1 , a + 2 ) w(a+1,a+2)+w(a,a+2)\geq w(a,a+1)+w(a+1,a+2)\\ w(a,a+1)+w(a,a+2)\geq w(a,a+1)+w(a+1,a+2) w(a+1,a+2)+w(a,a+2)w(a,a+1)+w(a+1,a+2)w(a,a+1)+w(a,a+2)w(a,a+1)+w(a+1,a+2)

也就是说,无论 f [ a ] [ a + 2 ] f[a][a+2] f[a][a+2] 的决策点在哪里,都满足:
f [ a ] [ a + 2 ] ≥ w ( a , a + 1 ) + w ( a + 1 , a + 2 ) f[a][a+2]\geq w(a,a+1)+w(a+1,a+2) f[a][a+2]w(a,a+1)+w(a+1,a+2)

即:
f [ a ] [ c ] + f [ a + 1 ] [ c + 1 ] ≤ f [ a ] [ c + 1 ] + f [ a + 1 ] [ c ] f[a][c]+f[a+1][c+1]\leq f[a][c+1]+f[a+1][c] f[a][c]+f[a+1][c+1]f[a][c+1]+f[a+1][c]

证明完了 a + 1 = c a+1=c a+1=c 的情况,我们接下来要推广到 a + k = c a+k=c a+k=c 的情况,假设此时 a + o = c   ( 1 ≤ o < k ) a+o=c~(1\leq o < k) a+o=c (1o<k) 的情况我们都证完了。

f [ a + 1 ] [ c ] f[a+1][c] f[a+1][c] f [ a ] [ c + 1 ] f[a][c+1] f[a][c+1] 的最优决策分别为 x , y x,y x,y,那么有:
f [ a + 1 ] [ c ] + f [ a ] [ c + 1 ] = f [ a + 1 ] [ x ] + f [ x + 1 ] [ c ] + w ( a + 1 , c )    +    f [ a ] [ y ] + f [ y + 1 ] [ c + 1 ] + w ( a , c + 1 ) f[a+1][c]+f[a][c+1]=\\ f[a+1][x]+f[x+1][c]+w(a+1,c)~~+~~f[a][y]+f[y+1][c+1]+w(a,c+1) f[a+1][c]+f[a][c+1]=f[a+1][x]+f[x+1][c]+w(a+1,c)  +  f[a][y]+f[y+1][c+1]+w(a,c+1)

这个决策对于 f [ a ] [ c ] f[a][c] f[a][c] f [ a + 1 ] [ c + 1 ] f[a+1][c+1] f[a+1][c+1] 不一定是最优的,此时我们需要分类讨论:

x ≤ y x\leq y xy,有:
f [ a ] [ c ] + f [ a + 1 ] [ c + 1 ] ≤ f [ a ] [ x ] + f [ x + 1 ] [ c ] + w ( a , c )    +    f [ a + 1 ] [ y ] + f [ y + 1 ] [ c + 1 ] + w ( a + 1 , c + 1 ) f[a][c]+f[a+1][c+1]\leq\\ f[a][x]+f[x+1][c]+w(a,c)~~+~~f[a+1][y]+f[y+1][c+1]+w(a+1,c+1) f[a][c]+f[a+1][c+1]f[a][x]+f[x+1][c]+w(a,c)  +  f[a+1][y]+f[y+1][c+1]+w(a+1,c+1)

用上面的柿子减下面的柿子,可以得到:
( f [ a + 1 ] [ c ] + f [ a ] [ c + 1 ] ) − ( f [ a ] [ c ] + f [ a + 1 ] [ c + 1 ] ) ≥ ( f [ a + 1 ] [ x ] + f [ a ] [ y ] ) − ( f [ a ] [ x ] + f [ a + 1 ] [ y ] )    ( 1 ) + ( w ( a + 1 , c ) + w ( a , c + 1 ) ) − ( w ( a , c ) + w ( a + 1 , c + 1 ) )    ( 2 ) (f[a+1][c]+f[a][c+1])-(f[a][c]+f[a+1][c+1])\geq\\ (f[a+1][x]+f[a][y])-(f[a][x]+f[a+1][y])~~(1)\\ +(w(a+1,c)+w(a,c+1))-(w(a,c)+w(a+1,c+1))~~(2) (f[a+1][c]+f[a][c+1])(f[a][c]+f[a+1][c+1])(f[a+1][x]+f[a][y])(f[a][x]+f[a+1][y])  (1)+(w(a+1,c)+w(a,c+1))(w(a,c)+w(a+1,c+1))  (2)

根据假设,因为 a + o = c   ( 1 ≤ o < k ) a+o=c~(1\leq o<k) a+o=c (1o<k) 的情况我们都证完了,所以有:
f [ a + 1 ] [ x ] + f [ a ] [ y ] ≥ f [ a ] [ x ] + f [ a + 1 ] [ y ] f[a+1][x]+f[a][y]\geq f[a][x]+f[a+1][y] f[a+1][x]+f[a][y]f[a][x]+f[a+1][y]

因为 w w w 也满足四边形不等式,所以 w w w 也有:
w ( a + 1 , c ) + w ( a , c + 1 ) ≥ w ( a , c ) + w ( a + 1 , c + 1 ) w(a+1,c)+w(a,c+1)\geq w(a,c)+w(a+1,c+1) w(a+1,c)+w(a,c+1)w(a,c)+w(a+1,c+1)

根据这两条柿子,就可以证明上面那条柿子的部分 ( 1 ) (1) (1) 和部分 ( 2 ) (2) (2) 都大于 0 0 0,所以最终得到:
( f [ a + 1 ] [ c ] + f [ a ] [ c + 1 ] ) − ( f [ a ] [ c ] + f [ a + 1 ] [ c + 1 ] ≥ 0 f [ a + 1 ] [ c ] + f [ a ] [ c + 1 ] ≥ f [ a ] [ c ] + f [ a + 1 ] [ c + 1 ] (f[a+1][c]+f[a][c+1])-(f[a][c]+f[a+1][c+1]\geq 0\\ f[a+1][c]+f[a][c+1]\geq f[a][c]+f[a+1][c+1] (f[a+1][c]+f[a][c+1])(f[a][c]+f[a+1][c+1]0f[a+1][c]+f[a][c+1]f[a][c]+f[a+1][c+1]

于是证出来了 f f f 满足四边形不等式的推论,从而 f f f 满足四边形不等式。

x > y x>y x>y,有
f [ a ] [ c ] + f [ a + 1 ] [ c + 1 ] ≤ f [ a ] [ y ] + f [ y + 1 ] [ c ] + w ( a , c ) + f [ a + 1 ] [ x ] + f [ x + 1 ] [ c + 1 ] + w ( a + 1 , c + 1 ) f[a][c]+f[a+1][c+1]\leq\\ f[a][y]+f[y+1][c]+w(a,c)+f[a+1][x]+f[x+1][c+1]+w(a+1,c+1) f[a][c]+f[a+1][c+1]f[a][y]+f[y+1][c]+w(a,c)+f[a+1][x]+f[x+1][c+1]+w(a+1,c+1)

上式减下式得到:
f [ a + 1 ] [ c ] + f [ a ] [ c + 1 ] − f [ a ] [ c ] − f [ a + 1 ] [ c + 1 ] = f [ x + 1 ] [ c ] + w ( a + 1 , c ) + f [ y + 1 ] [ c + 1 ] + w ( a , c + 1 ) − f [ y + 1 ] [ c ] − w ( a , c ) − f [ x + 1 ] [ c + 1 ] − w ( a + 1 , c + 1 ) f[a+1][c]+f[a][c+1]-f[a][c]-f[a+1][c+1]=\\ f[x+1][c]+w(a+1,c)+f[y+1][c+1]+w(a,c+1)\\ -f[y+1][c]-w(a,c)-f[x+1][c+1]-w(a+1,c+1) f[a+1][c]+f[a][c+1]f[a][c]f[a+1][c+1]=f[x+1][c]+w(a+1,c)+f[y+1][c+1]+w(a,c+1)f[y+1][c]w(a,c)f[x+1][c+1]w(a+1,c+1)

剩下的跟上面套路一样了。

最优决策点

进入最后的重头戏,证明 p ( i , j − 1 ) ≤ p ( i , j ) ≤ p ( i + 1 , j ) p(i,j-1)\leq p(i,j)\leq p(i+1,j) p(i,j1)p(i,j)p(i+1,j)

p ( i , j ) = p p(i,j)=p p(i,j)=p k k k 满足 p < k < j p<k<j p<k<j

f [ i ] [ j − 1 ] f[i][j-1] f[i][j1] 的决策点分别为 p p p k k k 时,有:
p :   f [ i ] [ j − 1 ] = f [ i ] [ p ] + f [ p + 1 ] [ j − 1 ] + w ( i , j − 1 ) k :   f [ i ] [ j − 1 ] = f [ i ] [ k ] + f [ k + 1 ] [ j − 1 ] + w ( i , j − 1 ) p:~f[i][j-1]=f[i][p]+f[p+1][j-1]+w(i,j-1)\\ k:~f[i][j-1]=f[i][k]+f[k+1][j-1]+w(i,j-1) p: f[i][j1]=f[i][p]+f[p+1][j1]+w(i,j1)k: f[i][j1]=f[i][k]+f[k+1][j1]+w(i,j1)

相减得到:
f [ i ] [ p ] + f [ p + 1 ] [ j − 1 ] − f [ i ] [ k ] − f [ k + 1 ] [ j − 1 ] = f [ i ] [ p ] − f [ i ] [ k ] + f [ p + 1 ] [ j − 1 ] − f [ k + 1 ] [ j − 1 ]    ( 1 ) f[i][p]+f[p+1][j-1]-f[i][k]-f[k+1][j-1]\\ =f[i][p]-f[i][k]+f[p+1][j-1]-f[k+1][j-1]~~(1) f[i][p]+f[p+1][j1]f[i][k]f[k+1][j1]=f[i][p]f[i][k]+f[p+1][j1]f[k+1][j1]  (1)

f [ i ] [ j ] f[i][j] f[i][j] 的决策点分别为 p p p k k k 时,有:
p :   f [ i ] [ j ] = f [ i ] [ p ] + f [ p + 1 ] [ j ] + w ( i , j ) k :   f [ i ] [ j ] = f [ i ] [ k ] + f [ k + 1 ] [ j ] + w ( i , j ) p:~f[i][j]=f[i][p]+f[p+1][j]+w(i,j)\\ k:~f[i][j]=f[i][k]+f[k+1][j]+w(i,j) p: f[i][j]=f[i][p]+f[p+1][j]+w(i,j)k: f[i][j]=f[i][k]+f[k+1][j]+w(i,j)

因为 p p p 对于 f [ i ] [ j ] f[i][j] f[i][j] 而言是最优决策点,所以有:
f [ i ] [ p ] + f [ p + 1 ] [ j ] ≤ f [ i ] [ k ] + f [ k + 1 ] [ j ] f [ i ] [ p ] − f [ i ] [ k ] ≤ f [ k + 1 ] [ j ] − f [ p + 1 ] [ j ] f[i][p]+f[p+1][j]\leq f[i][k]+f[k+1][j]\\ f[i][p]-f[i][k]\leq f[k+1][j]-f[p+1][j] f[i][p]+f[p+1][j]f[i][k]+f[k+1][j]f[i][p]f[i][k]f[k+1][j]f[p+1][j]

将这个这个柿子代入 ( 1 ) (1) (1) 式,得到:
( 1 ) ≤ f [ p + 1 ] [ j − 1 ] − f [ k + 1 ] [ j − 1 ] + f [ k + 1 ] [ j ] − f [ p + 1 ] [ j ] ( 1 ) ≤ ( f [ p + 1 ] [ j − 1 ] + f [ k + 1 ] [ j ] ) − ( f [ k + 1 ] [ j − 1 ] + f [ p + 1 ] [ j ] ) (1)\leq f[p+1][j-1]-f[k+1][j-1]+f[k+1][j]-f[p+1][j]\\ (1)\leq (f[p+1][j-1]+f[k+1][j])-(f[k+1][j-1]+f[p+1][j]) (1)f[p+1][j1]f[k+1][j1]+f[k+1][j]f[p+1][j](1)(f[p+1][j1]+f[k+1][j])(f[k+1][j1]+f[p+1][j])

诶,这就是个四边形不等式嘛~

因为
f [ p + 1 ] [ j − 1 ] + f [ k + 1 ] [ j ] ≤ f [ k + 1 ] [ j − 1 ] + f [ p + 1 ] [ j ] f[p+1][j-1]+f[k+1][j]\leq f[k+1][j-1]+f[p+1][j] f[p+1][j1]+f[k+1][j]f[k+1][j1]+f[p+1][j]

所以,最终得到 ( 1 ) ≤ 0 (1)\leq 0 (1)0

这意味着,任意满足 p < k < j p<k<j p<k<j k k k,对于 f [ i ] [ j − 1 ] f[i][j-1] f[i][j1] 而言,都不如 p p p 这个决策点优,所以 f [ i ] [ j − 1 ] f[i][j-1] f[i][j1] 的决策点肯定小于等于 p p p,即 p ( i , j − 1 ) ≤ p ( i , j ) p(i,j-1)\leq p(i,j) p(i,j1)p(i,j)

同理可以得到 p ( i , j ) ≤ p ( i + 1 , j ) p(i,j)\leq p(i+1,j) p(i,j)p(i+1,j)

证毕。

时间复杂度

原先需要三层枚举 i , j , k i,j,k i,j,k,现在也是,不过 k k k 的枚举范围发生了变化,设 l e n = j − i len=j-i len=ji,然后观察一下 k k k 的枚举范围:

  1. f [ i + 0 ] [ i + l e n + 0 ] f[i+0][i+len+0] f[i+0][i+len+0] k k k 的枚举范围是 p ( i + 0 , i + l e n − 1 ) p(i+0,i+len -1) p(i+0,i+len1) p ( i + 1 , i + l e n + 0 ) p(i+1,i+len+0) p(i+1,i+len+0)
  2. f [ i + 1 ] [ i + l e n + 1 ] f[i+1][i+len+1] f[i+1][i+len+1] k k k 的枚举范围是 p ( i + 1 , i + l e n + 0 ) p(i+1,i+len+0) p(i+1,i+len+0) p ( i + 2 , i + l e n + 1 ) p(i+2,i+len+1) p(i+2,i+len+1)
  3. f [ i + 2 ] [ i + l e n + 2 ] f[i+2][i+len+2] f[i+2][i+len+2] k k k 的枚举范围是 p ( i + 2 , i + l e n + 1 ) p(i+2,i+len+1) p(i+2,i+len+1) p ( i + 3 , i + l e n + 2 ) p(i+3,i+len+2) p(i+3,i+len+2)
  4. ……

可以发现,当 l e n len len 固定时, f [ i + k + 1 ] [ i + l e n + k + 1 ] f[i+k+1][i+len+k+1] f[i+k+1][i+len+k+1] 的枚举范围的起点就是 f [ i + k ] [ i + l e n + k ] f[i+k][i+len+k] f[i+k][i+len+k] 的枚举范围的终点。

由于对于任意 i < j i<j i<j,满足 1 ≤ p ( i , j ) < n 1\leq p(i,j)<n 1p(i,j)<n,所以,当 l e n len len 固定时, k k k 实际上也就是从 1 1 1 枚举到了 n n n,于是时间复杂度只有 O ( n 2 ) O(n^2) O(n2)

题表

可能以后还会更新吧……

[IOI2000]邮局   题解

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值