bzoj #2813.奇妙的Fibonacci 题解

题目传送门

题目大意: f i f_i fi 为斐波那契数列第 i i i 项,问有多少个 j j j 满足 f j ∣ f i f_j|f_i fjfi,并求出 j j j 的平方和。

题解

f j ∣ f i f_j|f_i fjfi 等价于 gcd ⁡ ( f i , f j ) = f j \gcd(f_i,f_j)=f_j gcd(fi,fj)=fj,而斐波那契有个神奇的结论: gcd ⁡ ( f i , f j ) = f gcd ⁡ ( i , j ) \gcd(f_i,f_j)=f_{\gcd(i,j)} gcd(fi,fj)=fgcd(i,j),代入进去就是 f gcd ⁡ ( i , j ) = f j f_{\gcd(i,j)}=f_j fgcd(i,j)=fj,即 gcd ⁡ ( i , j ) = j \gcd(i,j)=j gcd(i,j)=j,也就是说,满足要求的 j j j 就是 i i i 的因子。

剩下就是线性筛了,约数个数 和 约数平方和 筛法本质是一样的,因为这两个东西就是本质一样的两个函数,即 σ 0 \sigma_0 σ0 σ 2 \sigma_2 σ2,想必大家都很熟练了。

下面是那个神奇结论的证明:

引理1: f n + m = f m + 1 f n + f m f n − 1 f_{n+m}=f_{m+1}f_n+f_mf_{n-1} fn+m=fm+1fn+fmfn1

证明:
f n + m = f n + m − 1 + f n + m − 2 = 2 f n + m − 2 + f n + m − 3 = f k + 1 f n + m − k + f k f n + m − k − 1 \begin{aligned} f_{n+m}&=f_{n+m-1}+f_{n+m-2}\\ &=2f_{n+m-2}+f_{n+m-3}\\ &=f_{k+1}f_{n+m-k}+f_kf_{n+m-k-1} \end{aligned} fn+m=fn+m1+fn+m2=2fn+m2+fn+m3=fk+1fn+mk+fkfn+mk1

k = m k=m k=m,代入得到:
= f m + 1 f n + f m f n − 1 =f_{m+1}f_n+f_mf_{n-1} =fm+1fn+fmfn1


引理2: gcd ⁡ ( f n , f n + 1 ) = 1 \gcd(f_n,f_{n+1})=1 gcd(fn,fn+1)=1

证明: 这个说实话应该挺众所周知的。

考虑归纳法,一开始有 gcd ⁡ ( f 1 , f 2 ) = 1 \gcd(f_1,f_2)=1 gcd(f1,f2)=1

假设 gcd ⁡ ( f n − 1 , f n ) = 1 \gcd(f_{n-1},f_n)=1 gcd(fn1,fn)=1,那么有 gcd ⁡ ( f n + 1 , f n ) = gcd ⁡ ( f n + 1 − f n , f n ) = gcd ⁡ ( f n − 1 , f n ) = 1 \gcd(f_{n+1},f_n)=\gcd(f_{n+1}-f_n,f_n)=\gcd(f_{n-1},f_n)=1 gcd(fn+1,fn)=gcd(fn+1fn,fn)=gcd(fn1,fn)=1


引理3: gcd ⁡ ( f n + m , f m ) = gcd ⁡ ( f n , f m ) \gcd(f_{n+m},f_m)=\gcd(f_n,f_m) gcd(fn+m,fm)=gcd(fn,fm)

证明: 根据引理1,有 gcd ⁡ ( f n + m , f m ) = gcd ⁡ ( f m + 1 f n + f m f n − 1 , f m ) = gcd ⁡ ( f m + 1 f n , f m ) \gcd(f_{n+m},f_m)=\gcd(f_{m+1}f_n+f_mf_{n-1},f_m)=\gcd(f_{m+1}f_n,f_m) gcd(fn+m,fm)=gcd(fm+1fn+fmfn1,fm)=gcd(fm+1fn,fm)

根据引理1,有 gcd ⁡ ( f m + 1 , f m ) = 1 \gcd(f_{m+1},f_m)=1 gcd(fm+1,fm)=1,所以 gcd ⁡ ( f m + 1 f n , f m ) = gcd ⁡ ( f n , f m ) \gcd(f_{m+1}f_n,f_m)=\gcd(f_n,f_m) gcd(fm+1fn,fm)=gcd(fn,fm)


注意到有了这个引理3,其实我们已经可以对下标做类似辗转相减的事情了,那么一开始的结论 gcd ⁡ ( f n , f m ) = f gcd ⁡ ( n , m ) \gcd(f_n,f_m)=f_{\gcd(n,m)} gcd(fn,fm)=fgcd(n,m) 也就证明出来了。

证毕。

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define maxn 10000010
#define mod 1000000007

int Q,Qx,A,B,C,ans1=0,ans2=0;
void reduce(int &x){x+=x>>31&mod;}
int prime[maxn],t=0;
bool v[maxn];
int d1[maxn],d2[maxn],pd[maxn];
void SieveInit(){
	d1[1]=d2[1]=1;
	for(int i=2;i<=maxn-10;i++){
		if(!v[i])prime[++t]=i,d1[i]=2,reduce(d2[i]=1+1ll*i*i%mod-mod),pd[i]=1;
		for(int j=1;j<=t&&i*prime[j]<=maxn-10;j++){
			v[i*prime[j]]=true;
			if(i%prime[j]==0){
				pd[i*prime[j]]=pd[i];
				reduce(d1[i*prime[j]]=d1[i]+d1[pd[i]]-mod);
				reduce(d2[i*prime[j]]=1ll*d2[i]*prime[j]%mod*prime[j]%mod+d2[pd[i]]-mod);
				break;
			}
			pd[i*prime[j]]=i;
			reduce(d1[i*prime[j]]=d1[i]+d1[i]-mod);
			reduce(d2[i*prime[j]]=1ll*d2[i]*prime[j]%mod*prime[j]%mod+d2[i]-mod);
		}
	}
}

int main()
{
	SieveInit();
	scanf("%d %d %d %d %d",&Q,&Qx,&A,&B,&C);
	while(Q--){
		reduce(ans1+=d1[Qx]-mod);
		reduce(ans2+=d2[Qx]-mod);
		if(Qx&1)reduce(ans1+=1-mod),reduce(ans2+=4-mod);
		Qx=(1ll*Qx*A+B)%C+1;
	}
	printf("%d\n%d",ans1,ans2);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值