利用powerful number求积性函数前缀和小结

介绍

powerful number指的是,一个数质因数分解后,每个质因子的指数 ≥ 2 \geq 2 2,那么这个数就叫powerful number。

这种数有个很好的性质: n n n 以内的powerful number数量是 n \sqrt n n 级别的。于是我们往往可以用这个性质将求前缀和的复杂度变成这个级别。

利用这个东西,我们可以很方便地求一些积性函数的前缀和。

正题

考虑一般情况,对于积性函数 f ( x ) f(x) f(x),我们构造一个积性函数 g ( x ) g(x) g(x),满足:

  1. g g g 的前缀和很好求。
  2. 对于任意质数 p p p,有 g ( p ) = f ( p ) g(p)=f(p) g(p)=f(p)

条件比较苛刻,所以应用范围不算太广。

h = f / g h=f/g h=f/g,这里除法是狄利克雷卷积的逆运算。那么有 f ( p ) = h ( 1 ) g ( p ) + h ( p ) g ( 1 ) f(p)=h(1)g(p)+h(p)g(1) f(p)=h(1)g(p)+h(p)g(1)

别忘记积性函数都满足 f ( 1 ) = g ( 1 ) = h ( 1 ) = 1 f(1)=g(1)=h(1)=1 f(1)=g(1)=h(1)=1,根据 f ( p ) = g ( p ) f(p)=g(p) f(p)=g(p),得到 h ( p ) = 0 h(p)=0 h(p)=0

由于 f , g f,g f,g 都是积性函数,根据狄利克雷卷积的性质, h h h 也是积性函数,即对于任意 h ( i ) h(i) h(i),当 i i i 不是powerful number时, h ( i ) h(i) h(i) 都为 0 0 0

有了这个性质,再看回我们的问题:求 f f f 的前缀和,即:
∑ i = 1 n f ( i ) = ∑ i j ≤ n g ( i ) h ( j ) = ∑ i = 1 n h ( i ) ∑ j = 1 ⌊ n i ⌋ g ( j ) = ∑ i = 1 n h ( i ) S g ( ⌊ n i ⌋ ) \begin{aligned} \sum_{i=1}^n f(i)&=\sum_{ij\leq n}g(i)h(j)\\ &=\sum_{i=1}^n h(i)\sum_{j=1}^{\lfloor \frac n i \rfloor} g(j)\\ &=\sum_{i=1}^n h(i)S_g(\lfloor \frac n i \rfloor) \end{aligned} i=1nf(i)=ijng(i)h(j)=i=1nh(i)j=1ing(j)=i=1nh(i)Sg(in)

由于 g g g 的前缀和很好求,根据上面得到的性质,我们只需要枚举 i i i 为所有powerful number,然后求和即可。

至于求 h h h 的方法,利用定义即可,对于 h ( p k ) h(p^k) h(pk),我们这样求:
f ( p k ) = ∑ i = 0 k h ( p i ) g ( p k − i ) h ( p k ) = f ( p k ) − ∑ i = 0 k − 1 h ( p i ) g ( p k − i ) \begin{aligned} f(p^k)&=\sum_{i=0}^k h(p^i)g(p^{k-i})\\ h(p^k)&=f(p^k)-\sum_{i=0}^{k-1} h(p^i)g(p^{k-i}) \end{aligned} f(pk)h(pk)=i=0kh(pi)g(pki)=f(pk)i=0k1h(pi)g(pki)

例1

有一个积性函数 f ( x ) f(x) f(x),满足 f ( p k ) = p f(p^k)=p f(pk)=p,求前缀和。

构造 g = i d g=id g=id 即可, i d id id 是单位函数,即 i d ( x ) = x id(x)=x id(x)=x,前缀和显然很好求,也满足 f ( p ) = g ( p ) = p f(p)=g(p)=p f(p)=g(p)=p

例2

多组询问(100组),令 f ( x ) f(x) f(x) 表示 x x x 的最大平方因子,求前 n n n 项之和, n ≤ 1 0 14 n\leq 10^{14} n1014

对于质数 p p p,显然有 f ( p ) = 1 f(p)=1 f(p)=1,于是令 g = I g=I g=I 即可。 I I I 是恒等函数,即 I ( x ) = 1 I(x)=1 I(x)=1

注意到这里是多组询问,如果每次询问都达到 n \sqrt n n 我们是受不了的,观察答案式子:
∑ i = 1 n h ( i ) ⌊ n i ⌋ \sum_{i=1}^n h(i)\lfloor \frac n i \rfloor i=1nh(i)in

手玩一下求 h h h 的式子,会发现在这题有个有趣的性质:当 k k k 为奇数时 h ( p k ) = 0 h(p^k)=0 h(pk)=0

也就是说对于任意 i i i,只有当 i i i 为平方数时 h ( i ) h(i) h(i) 才不为 0 0 0,所以答案式子等于:
∑ i = 1 n h ( i 2 ) ⌊ n i 2 ⌋ \sum_{i=1}^{\sqrt n} h(i^2)\lfloor \frac n {i^2} \rfloor i=1n h(i2)i2n

这个东西再套个除法分块就是 n 3 \sqrt[3] n 3n 的,总时间复杂度 O ( n + T n 3 ) O(\sqrt n+T\sqrt[3] n) O(n +T3n )

代码如下:

#include <bits/stdc++.h>
using namespace std;
#define maxn 10000010
#define ll long long

int T;ll n;
int prime[maxn],t=0;
bool v[maxn];
const int N=maxn-10;
const ll N2=1ll*N*N;
void SieveInit(){
	for(int i=2;i<=N;i++){
		if(!v[i])prime[++t]=i;
		for(int j=1;j<=t&&i*prime[j]<=N;j++){
			v[i*prime[j]]=true;
			if(i%prime[j]==0)break;
		}
	}
}
int id(ll x){return x<=N?x:x/N+N;}
ll *h[maxn];unsigned ll H[maxn];//这题对2^64取模所以利用自然溢出
void calc_h(){
	for(int i=1;i<=t;i++){//由于只有平方数有值,所以非平方数干脆不存,h[i][j]是i^{2j}的值
		double lim=N2/prime[i]/prime[i];ll now=1;int j=0;
		while(now<=lim)now*=1ll*prime[i]*prime[i],j++;
		h[i]=new long long[j+1];
		ll d=1;for(int k=0;k<=j;k++){
			h[i][k]=d;for(int l=0;l<k;l++)h[i][k]-=h[i][l];
			d*=1ll*prime[i]*prime[i];
		}
	}
}
void dfs(int x,ll now,ll val){//枚举powerful number
	H[(int)sqrt(now)]=val;
	for(int i=x;i<=t;i++){
		double lim=N2/prime[i]/prime[i];
		if(now>lim)break;
		ll Now=now;
		for(int j=2;;j+=2){
			Now*=1ll*prime[i]*prime[i];
			dfs(i+1,Now,val*h[i][j/2]);
			if(Now>lim)break;
		}
	}
}

int main()
{
	SieveInit();calc_h();dfs(1,1,1);
	for(int i=1;i<=N;i++)H[i]+=H[i-1];
	cin>>T;while(T--)
	{
		cin>>n;
		int sqn=sqrt(n);unsigned ll ans=0;
		for(int l=1,r;l<=sqn;l=r+1){
			r=sqrt(n/(n/l/l));
			ans+=(H[r]-H[l-1])*(n/l/l);
		}
		cout<<ans<<"\n";
	}
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值