Powerful Number 筛

本文主要讲解 Powerful Number 筛,并为之前的杜教筛进行一定的补充

powerful number \text{powerful number} powerful number 定义:如果一个正整数 x x x 所有质因子的幂次均大于等于二,即 x = ∏ p i e i x=\prod p_i^{e_i} x=piei e i ≥ 2 e_i\geq 2 ei2 ,则称 x x x 是一个 powerful number \text{powerful number} powerful number

一个重要的性质: [ 1 , n ] [1,n] [1,n] 这个区间的 powerful number \text{powerful number} powerful number O ( n ) O(\sqrt n) O(n )
证明:
不难发现,所有的 powerful number \text{powerful number} powerful number 都可以表示成 a 2 b 3 a^2b^3 a2b3 的形式。我们可以通过枚举 a a a 来表示区间 [ 1 , n ] [1,n] [1,n] powerful number \text{powerful number} powerful number 数量:
O ( ∑ a = 1 n ( n a 2 ) 1 3 ) = O ( ∫ 1 n ( n a 2 ) 1 3 d a ) = O ( 3 n 1 3 a 1 3 ∣ 1 n ) = O ( n ) O(\sum_{a=1}^{\sqrt n}(\frac{n}{a^2})^{\frac {1}{3}})=O(\int_1^{\sqrt n}(\frac {n}{a^2})^{\frac 1 3} da)=O(3n^{\frac 13}a^{\frac 13}|_1^{\sqrt n})=O(\sqrt n) O(a=1n (a2n)31)=O(1n (a2n)31da)=O(3n31a311n )=O(n )

Powerful Number 筛:
P 5325 P5325 P5325 为例,该题是求 f ( p k ) = p k ( p k − 1 ) f(p^k)=p^k(p^k-1) f(pk)=pk(pk1) 这个积性函数的前缀和
我们构造两个积性函数 g ( x ) , h ( x ) g(x),h(x) g(x),h(x) ,其满足 g ( p ) = f ( p ) g(p)=f(p) g(p)=f(p) f = g ∗ h f=g*h f=gh
此时有 f ( p ) = g ( p ) h ( 1 ) + h ( p ) g ( 1 ) f(p)=g(p)h(1)+h(p)g(1) f(p)=g(p)h(1)+h(p)g(1) ,而 f ( p ) = g ( p ) , h ( 1 ) = g ( 1 ) = 1 f(p)=g(p),h(1)=g(1)=1 f(p)=g(p),h(1)=g(1)=1 所以 h ( p ) = 0 h(p)=0 h(p)=0
而由于 h ( x ) h(x) h(x) 是一个积性函数,所以其函数值不为 0 0 0 的点自变量一定是 powerful number \text{powerful number} powerful number
那么题目所求可进行如下转化:
∑ i = 1 n f ( i ) = ∑ i j ≤ n g ( i ) h ( j ) = ∑ i = 1 n h ( i ) ∑ j = 1 ⌊ n i ⌋ g ( j ) \sum_{i=1}^nf(i)=\sum_{ij\leq n}g(i)h(j)=\sum_{i=1}^nh(i)\sum_{j=1}^{\lfloor \frac{n}{i} \rfloor}g(j) i=1nf(i)=ijng(i)h(j)=i=1nh(i)j=1ing(j)
Powerful Number 筛的瓶颈就在于求 ∑ j = 1 ⌊ n i ⌋ g ( j ) \sum_{j=1}^{\lfloor \frac{n}{i} \rfloor}g(j) j=1ing(j) ,对于一般的简单数论函数我们通常采取杜教筛来以 O ( n 2 3 ) O(n^\frac 23) O(n32) 来求 g g g 的前缀和
对于本题 f ( p ) = p ( p − 1 ) = p φ ( p ) f(p)=p(p-1)=p\varphi(p) f(p)=p(p1)=pφ(p) ,所以我们不妨令 g ( x ) = x φ ( x ) g(x)=x\varphi(x) g(x)=xφ(x)
g ( x ) g(x) g(x) 的前缀和我们可以用经典杜教筛求:
我们知道 φ ∗ I = i d \varphi *I=id φI=id , 当 C C C 是完全积性函数时有如下性质:
( A ⋅ C ) ∗ ( B ⋅ C ) = ( A ∗ B ) ⋅ C (A⋅C)∗(B⋅C)=(A∗B)⋅C (AC)(BC)=(AB)C
证明:
∑ d ∣ n ( A ( d ) C ( d ) ) ( B ( n d ) C ( n d ) ) = C ( n ) ∑ d ∣ n A ( d ) B ( n d ) \sum_{d|n}\big(A(d)C(d)\big)\big(B(\frac{n}{d})C(\frac{n}{d})\big)=C(n)\sum_{d|n}A(d)B(\frac{n}{d}) dn(A(d)C(d))(B(dn)C(dn))=C(n)dnA(d)B(dn)
所以我们可以通过给 φ ∗ I = i d \varphi *I=id φI=id 两边乘一个 i d id id 来构造杜教筛,即 i d ⋅ φ ∗ i d = i d 2 id·\varphi*id=id^2 idφid=id2
这样我们就可以 O ( n 2 3 ) O(n^{\frac 23}) O(n32) 来求 ∑ i = 1 n i φ ( i ) \sum_{i=1}^n i\varphi(i) i=1niφ(i)
代码如下:

ll get_sum(int x)
{
	if(x <= limit) return g[x];
	if(mp[x]) return mp[x];
	ll tmp = x%mod;
	ll res = x*(x+1)%mod*(2*x+1)%mod*inv6%mod;
	for(ll l = 2,r;l <= x;l = r+1)
	{
		r = x/(x/l);
		res = (res-get_sum(x/l)*(r-l+1)%mod*(l+r)%mod*inv2%mod)%mod;
	}
	return mp[x] = (res+mod)%mod;
}

接下来问题就只剩求 h ( x ) h(x) h(x) ,因为 powerful number \text{powerful number} powerful number [ 1 , n ] [1,n] [1,n] 只有 O ( n ) O(\sqrt n) O(n ) 个,所以只需要求 h h h powerful number \text{powerful number} powerful number 处的取值即可(其他地方的 h ( x ) = 0 h(x)=0 h(x)=0
这里有一种生成 powerful number \text{powerful number} powerful number 的方法:
枚举 p e ( e ≥ 2 , p ≤ n ) p^e(e\geq2,p\leq \sqrt n) pe(e2,pn ) 通过 d f s dfs dfs 硬搞
对于 h h h 我们考虑有迪利克雷卷积的定义式子,将其展开:
f ( p k ) = ∑ i + j = k g ( p i ) h ( p j ) f(p^k)=\sum_{i+j=k}g(p^i)h(p^j) f(pk)=i+j=kg(pi)h(pj)
所以移项有:
h ( p k ) = f ( p k ) − ∑ i = 0 k − 1 g ( p k − i ) h ( p i ) h(p^k)=f(p^k)-\sum_{i=0}^{k-1}g(p^{k-i})h(p^i) h(pk)=f(pk)i=0k1g(pki)h(pi)
然后利用积性函数的性质合并质数即可

具体细节见代码:

//#pragma GCC optimize(2)
//#pragma GCC optimize("Ofast","inline","-ffast-math")
//#pragma GCC target("avx,sse2,sse3,sse4,mmx")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<queue>
#include<unordered_map>
#define ll long long
#define inf 0x3f3f3f3f
#define int  ll
#define endl '\n'
#define IOS ios::sync_with_stdio(0); cin.tie(0); cout.tie(0)
using namespace std;
int read()
{
	int res = 0,flag = 1;
	char ch = getchar();
	while(ch<'0' || ch>'9')
	{
		if(ch == '-') flag = -1;
		ch = getchar();
	}
	while(ch>='0' && ch<='9')
	{
		res = (res<<3)+(res<<1)+(ch^48);//res*10+ch-'0';
		ch = getchar();
	}
	return res*flag;
}
const int maxn = 1e6+5;
const int mod = 1e9+7;
const double pi = acos(-1);
const double eps = 1e-8;
int n,cnt,limit,sq,pri[maxn],g[maxn],ans,h[maxn][35];
bool vis[maxn];
void init(int n)
{
	vis[1] = true; g[1] = 1;
	for(int i = 2;i <= n;i++)
	{
		if(!vis[i])
		{
			pri[++cnt] = i;
			g[i] = i-1;
		}
		for(int j = 1;j <= cnt && i*pri[j]<=n;j++)
		{
			vis[i*pri[j]] = true;
			if(i%pri[j] == 0) 
			{
				g[i*pri[j]] = g[i]*pri[j];
				break;
			}
			g[i*pri[j]] = g[i]*(pri[j]-1);
		}
		g[i] = (g[i-1]+g[i]*i)%mod;
	}
	for(sq = 1;pri[sq]*pri[sq] <= ::n;sq++);
	int gg[35];
	for(int i = 1;i <= sq;i++)
	{
		gg[0] = h[i][0] = 1;
		gg[1] = pri[i]*(pri[i]-1)%mod;
		int p2 = pri[i]*pri[i]%mod;
		for(int p = pri[i]*pri[i],e = 2;p <= ::n;p *= pri[i],e++)
		{
			gg[e] = gg[e-1]*p2%mod;
			h[i][e] = p%mod*(p%mod-1)%mod;
			for(int j = 0;j < e;j++) h[i][e] = (h[i][e]-h[i][j]*gg[e-j]%mod+mod)%mod;
		}
	}
} 
unordered_map<int,ll>mp;
ll qpow(ll a,ll b)
{
	ll res = 1;
	while(b)
	{
		if(b&1) res = res*a%mod;
		a = a*a%mod;
		b >>= 1;
	}
	return res;
}
const int inv2 = qpow(2,mod-2),inv6 = qpow(6,mod-2);
ll get_sum(int x)
{
	if(x <= limit) return g[x];
	if(mp[x]) return mp[x];
	ll tmp = x%mod;
	ll res = tmp*(tmp+1)%mod*(2*tmp+1)%mod*inv6%mod;
	for(ll l = 2,r;l <= x;l = r+1)
	{
		r = x/(x/l);
		res = (res-get_sum(x/l)*(r-l+1)%mod*((l+r)%mod)%mod*inv2%mod)%mod; //注意 l+r 取模 
	}
	return mp[x] = (res+mod)%mod;
}
void dfs(int cur,int val,int st)
{
	ans = (ans+val*get_sum(n/cur))%mod;
	for(int i = st;i <= sq;i++)
	{
		if(pri[i]*pri[i] > n/cur) return ;
		for(ll p = pri[i]*pri[i],e = 2;p*cur <= n;p *= pri[i],e++)
			dfs(cur*p,val*h[i][e]%mod,i+1);
	}
}
signed main()
{
	n = read();
	limit = max((int)pow(n,0.6),100LL);
	init(limit);
	dfs(1,1,1);
	cout<<ans<<endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值