leetcode:304. 二维区域和检索 - 矩阵不可变

链接:https://leetcode-cn.com/problems/range-sum-query-2d-immutable/

使用暴力解法,没想到竟然过了。
image-20210422210524179.png

class NumMatrix {
    int[][] matrix;
    public NumMatrix(int[][] matrix) {
        this.matrix = matrix;
    }
    
    public int sumRegion(int row1, int col1, int row2, int col2) {
        int sum = 0;
        for (int i = row1; i <= row2; i++) {
            for (int j = col1; j <= col2; j++) {
                sum += matrix[i][j];
            }
        }

        return sum;
    }
}

注意题目说会多次调用sumRegion方法,所以暴力解法指不定就超时了。

这里可以使用动态规划求解。假设
f ( i , j ) 表 示 矩 阵 中 以 ( i , j ) 为 右 下 脚 顶 点 的 左 上 方 矩 阵 的 区 域 和 f(i, j) 表示矩阵中以(i, j)为右下脚顶点的左上方矩阵的区域和 f(i,j)(i,j)

image-20210422222927418.png

如上图,就表示f(1, 1)的值。那么可知,对于任意f(i, j),计算公式如下
f ( i , j ) = f ( i , j − 1 ) + f ( i − 1 , j ) − f ( i − 1 , j − 1 ) + m a t r i x [ i ] [ j ] f(i,j) = f(i,j-1) + f(i-1,j) - f(i-1,j-1) + matrix[i][j] f(i,j)=f(i,j1)+f(i1,j)f(i1,j1)+matrix[i][j]

image-20210422223954745.png

区域4:f(i, j)

区域3:f(i - 1, j)

区域2:f(i, j - 1)

区域1:f(i - 1, j - 1)

所以:区域4 = 区域3 + 区域2 - 区域1 + 10(matrix [i] [j])

有了上面的公式就好办了,对于任意的两个点(row1, col1)、(row2, col2)都可以围成一个矩形区域,假设其区域和为sum:
s u m = f ( r o w 2 , c o l 2 ) − f ( r o w 2 , c o l 1 − 1 ) − f ( r o w 1 − 1 , c o l 2 ) + f ( r o w 1 − 1 , c o l 1 − 1 ) sum = f(row2, col2) - f(row2, col1 - 1) - f(row1 - 1, col2) + f(row1 - 1, col1 - 1) sum=f(row2,col2)f(row2,col11)f(row11,col2)+f(row11,col11)

image-20210422225000443.png

也是划分成了4个区域进行求解。代码如下

class NumMatrix {
    int[][] sum;
    public NumMatrix(int[][] matrix) {
        // matrix可能是空数组
        int m = matrix.length, n = (m == 0) ? 0 : matrix[0].length;
        // 横竖长度都在matrix的基础上+1,这样循环时下标可以从1开始,避免判断i - 1,j - 1越界的情况
        sum = new int[m + 1][n + 1];
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                sum[i][j] = sum[i][j - 1] + sum[i - 1][j] - sum[i - 1][j - 1] + matrix[i - 1][j - 1];
            }
        }
    }
    
    public int sumRegion(int row1, int col1, int row2, int col2) {
        // 因为前面横竖都+1,所以这里也要+1
        row1++;
        col1++;
        row2++;
        col2++;
        return sum[row2][col2] - sum[row2][col1 - 1] - sum[row1 - 1][col2] + sum[row1 - 1][col1 - 1];
    }
}

时间复杂度O(n * m),空间复杂度O(n * m)

image-20210422225052929.png

这个击败率。。。。在sumRegion函数中其实还可以进行一些特殊情况的判断,从而提前返回。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值