- 博客(7)
- 收藏
- 关注
原创 第六次作业
import osnn.ReLU(),nn.ReLU(),plt.cla()plt.draw();plt.ioff()plt.show()
2023-04-23 17:25:41 72
原创 第五次作业
X, Y, Z = encoded_data.data[:, 0].numpy(), encoded_data.data[:, 1].numpy(), encoded_data.data[:, 2].numpy() # 标签值。nn.Linear(12, 3), # 压缩成3个特征, 进行 3D 图像可视化。ax.text(x, y, z, s, backgroundcolor=c) # 标位子。nn.Sigmoid(), # 激励函数让输出值在 (0, 1)# x, y, z 的数据值。
2023-04-16 19:29:34 71
原创 疯狂交作业
torch.save(net1.state_dict(), 'net_params.pkl') # 只保存网络中的参数 (速度快, 占内存少)torch.save(net1, 'net.pkl') # 保存整个网络。3.这种方式将会提取整个神经网络, 网络大的时候可能会比较慢.4.这种方式将会提取所有的参数, 然后再放到你的新建网络中.# 将保存的参数复制到 net3。2.接下来我们有两种途径来保存。
2023-04-09 21:58:46 75
原创 第四次作业
import osplt.show()nn.Conv2d(plt.cla()plt.show();plt.ion()if HAS_SK:plt.ioff()
2023-04-02 21:57:33 68
原创 使用pytorch对数据进行三分类
x0 = torch.normal(2*n_data, 1) # 类型0 x data (tensor), shape=(100, 2)x1 = torch.normal(-2*n_data, 1) # 类型1 x data (tensor), shape=(100, 1)y1 = torch.ones(100) # 类型1 y data (tensor), shape=(100, )one-hot 形式的, 而是1D Tensor, (batch,)
2023-03-26 22:38:29 324
原创 pytorch实现回归算法
线性回归是机器学习中最基础和简单的算法,你可以将它视为深度学习界的 HelloWorld。如果不了解线性回归,你可以简单的理解为:训练一条直线,让这条直线拟合一些数据点的趋势。下面使用 PyTorch 实现一个简单的线性回归算法。# 导入自动梯度运算包,主要用Variable这个类。# 生成100个正态分布随机数,均值为0,方差为10。# 找到一条直线,使得它到所有点 的距离都很小。# 将Variable转换为数组,绘图。# 生成100个0---100间的数。# 反向传播 参数的更新。
2023-03-19 19:53:55 318
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人