- 博客(171)
- 收藏
- 关注
原创 用python打造你自己的chatgpt问答机器人!(提供训练代码)-- 构建最基础的客户端,服务端和预模型
实现一个简单的RESTful API服务,允许客户端发送文本消息给服务器,服务器则利用预训练的语言模型生成回复并返回给客户端。通过这种方式,用户可以通过HTTP请求与我们的聊天机器人进行交流。
2025-01-04 15:50:01
3275
18
原创 利用机器学习预测离婚:从数据分析到模型构建(含方案和源码)
在本文中,我们详细介绍了如何使用递归特征消除法(RFE)和递归特征消除与交叉验证(RFECV)进行特征选择,并展示了如何在离婚预测数据集上应用这些方法。通过 RFECV,我们确定了最佳的特征数量,并选择了排名为 1、2、3 和 4 的特征。我们还进行了模型训练、交叉验证和性能评估,确保模型在测试集上的表现良好。
2024-12-03 17:59:56
1870
原创 机器学习预测实战 -- 信用卡交易欺诈数据监测(含方案和代码思路)
项目背景一批交易数据,数据总量28万,其中正常交易数据量占比99.83%,欺诈交易数据量仅占比0.17%。目标训练出一个模型,能判断出交易数据是正常数据还是欺诈数据方案一:下采样的方法训练模型获取数据import pandas as pdimport numpy as npimport seaborn as snsimport matplotlib.pyplot as pltimport timeimport warningswarnings.filterwarning
2022-03-27 00:10:47
12153
84
原创 篮球裁判犯规识别系统(六) 用 Python + MediaPipe 实现实时手指计数
本文介绍了一种基于Python+MediaPipe+OpenCV的实时手指计数方案。通过MediaPipe Hands检测手部关键点,结合拇指方向判断(区分左右手)和其他四指的指尖-指根坐标比较,准确识别手指伸直状态。系统能在摄像头画面中实时显示左右手的手指数量,适用于手势控制、游戏交互等场景。核心代码包含手指计数逻辑和可视化显示功能,支持双手同时检测。环境要求Python 3.8+及相应库安装,实现简单高效,可作为手势识别应用的开发基础。
2025-12-29 16:59:38
190
原创 篮球裁判犯规识别系统(五) foul_fn函数 下
本文介绍了篮球比赛视频分析中犯规动作检测的具体实现方法。系统通过四个核心函数判断常见犯规动作:1) is_infringe_cylinder检测手臂连续摆动侵犯圆柱体;2) is_block通过手臂角度判断阻挡动作;3) is_push结合手臂长度变化、肘部角度和手部关键点检测推人动作;4) is_pull通过手部位置关系和抓握状态识别拉人动作。系统采用状态机管理连续帧信息,结合几何计算和手部关键点检测,通过多条件组合和阈值控制确保动作判定的准确性和稳定性。这套基于MediaPipe的规则引擎设计既保证了实
2025-12-29 16:52:30
48
原创 篮球裁判犯规识别系统(四) foul_fn函数 上
本文介绍了一个篮球犯规检测函数foul_fn的实现流程。该函数通过状态机分阶段处理,Phase0检测单手举起动作,Phase1进行犯规判定。采用历史窗口记录手腕位置数据,结合多种规则函数(阻挡、碰撞、拉人、推人等)进行优先级判断,并通过连续帧计数确保判定稳定性。函数具有防抖动处理、异常动作过滤等工程亮点,可扩展性强。该方案通过几何特征和阈值判断实现了篮球犯规动作的准确识别。
2025-12-29 16:43:36
37
原创 篮球裁判犯规识别系统(三)GestureDetector类源码
本文介绍了GestureDetector类的实现,这是犯规动作识别系统的核心模块。该类利用MediaPipe姿态估计能力,从视频帧中提取人体关键点(肩、肘、腕),通过几何计算和规则函数判断动作类型。文章详细讲解了Pose模型的初始化参数、肘部角度计算方法、坐标映射处理流程,以及动作判定的设计理念。该模块具有高复用性、实时性优化和强扩展性特点,将关键点提取与动作判定分离,便于后续规则修改。最后指出下一章将重点讲解犯规判断函数foul_fn的实现。
2025-12-29 16:32:37
117
原创 篮球裁判犯规识别系统(二)-- main源码
摘要:本文介绍了一个篮球比赛视频中自动识别犯规动作和球员号码的实用系统。系统采用模块化设计,将问题分解为动作识别和号码识别两个阶段:首先通过MediaPipe检测犯规动作,然后进入号码识别阶段,通过手势识别确定球员号码。文章重点阐述了几个关键技术点:使用PIL处理中文显示、基于状态机的时序控制、几何关系判断举手动作,以及模块化设计的优势。该系统避免了端到端模型的高成本问题,具有可解释性强、易于调试和扩展的特点,为体育视频分析提供了一个工程化解决方案范例。
2025-12-29 16:26:23
262
原创 篮球裁判犯规识别系统(一)--- 提供所有源码
《篮球视频自动判罚系统解析》摘要:该系统能实时分析未经剪辑的篮球比赛视频,自动识别推人、拉人等犯规动作,并跟踪裁判手势判定犯规球员号码。采用分层处理架构:先通过姿态检测捕捉动作特征,再通过状态机逻辑分阶段处理犯规动作、缓冲等待和号码识别。系统严格模拟真实裁判判罚流程,包含时间缓冲设计,避免误判。最终输出结构化判罚结果(犯规类型+球员号码+时间戳),适用于比赛复盘和技术统计。不同于传统视觉系统,该方案突出体育规则的特殊性和状态机在时序处理中的核心作用。
2025-12-29 16:17:44
708
原创 第三章 · 数据库管理与视频路径获取
本文介绍了视频分析系统中的数据库模块实现,通过VideoDB类封装了视频任务管理功能。主要功能包括:1) 数据库连接初始化;2) 获取待处理视频列表;3) 更新视频状态(pending/processing/done/failed);4) 保存分析结果(JSON格式);5) 处理路径转换(Windows到Linux);6) 防重复机制(记录已处理视频)。该模块为分布式视频分析提供了可靠的数据支持,支持多状态管理、路径转换、结果存储等功能,确保分析任务的幂等性和高效性。
2025-10-10 11:26:38
94
原创 第二章 · 分布式任务调度主控逻辑:Ray + PyAV 的大规模视频推理架构
本文介绍了基于Ray集群的视频智能分析系统主控逻辑实现。系统通过safe_ray_init()自动连接/重启Ray集群,采用分布式任务处理视频分析。主程序包含视频数据加载、任务分块分发、异常处理等核心功能,支持多节点多GPU环境下稳定运行。关键模块包括视频解码器、分析器和数据库接口,实现了从视频帧解码、智能分析到结果存储的完整流程。系统具备优雅退出机制,通过全局标志位处理中断信号,确保任务中断时的数据完整性。采用分块处理策略(chunk_size=10)和进度监控(tqdm),优化了大规模视频处理效率。
2025-10-10 10:50:25
202
原创 第1章 · 从零搭建你的AI视频智能分析系统
【项目摘要】本专栏将带您构建一个工业级AI视频分析系统,涵盖人脸检测、表情识别、手部动作分析等核心功能。项目亮点包括:基于PyAV的硬件加速解码模块、预训练模型直接调用、Ray分布式推理框架实现多GPU集群并行处理,以及完整的数据库交互设计。通过实战,您将掌握视频智能分析的全流程技术栈,最终获得可直接落地的项目经验。首章重点讲解主控流程搭建,包括Ray集群初始化、任务分发、异常处理等关键环节,为后续模块开发奠定基础。(147字)
2025-10-10 10:43:21
252
原创 用 OpenCV 实现视频转场检测(基于直方图差异)
本文介绍了一种基于OpenCV的轻量级视频转场检测方法,无需深度学习模型。核心算法通过比较相邻帧的灰度直方图差异(使用Bhattacharyya距离),结合滑动窗口检测局部极大值和阈值筛选来确定转场点。为解决连续多帧检测问题,采用最小时间间隔去重策略。该方法具有实现简单(不足100行代码)、计算高效(仅需CPU)和通用性强等特点,适用于镜头分割、内容检索等多种视频分析任务。文章还提供了优化建议,如结合色彩直方图或边缘特征提升检测精度。
2025-10-10 10:07:34
648
原创 了解 ReAct 框架:语言模型中推理与行动的协同
本文探讨了2022年提出的ReAct框架,该框架通过动态结合推理和行动来提升大型语言模型处理复杂任务的能力。ReAct框架的核心在于引导模型在推理(任务分解)和行动(工具调用)间循环迭代,从而增强模型的可解释性和通用性。文章详细介绍了ReAct的工作原理、与OpenAI tool_calls机制的配合方式,并提供了Python实现示例,展示如何构建支持多意图任务(如天气查询和数学计算)的智能代理。ReAct的优势包括动态推理、任务分解能力和可解释性,但也存在提示依赖、计算成本高等局限性。该框架特别适合需要外
2025-07-21 17:07:23
1597
原创 从简单的 OpenAI API 调用到构建 AI Agent:一步步实现
本文展示了如何将基础的OpenAI API调用逐步改造为功能完善的AI助手。通过添加交互循环、上下文记忆、外部工具调用和模块化设计,最终实现了一个支持多任务处理、能持续对话的智能代理。原始代码仅能处理单次请求,改进后版本具备记忆功能、天气查询和数学计算能力,同时优化了API密钥管理和代码结构。这一演进过程清晰地呈现了构建实用AI助手的关键步骤,为开发更复杂的智能代理奠定了基础。
2025-07-21 14:27:07
989
原创 st-Gcn训练跳绳识别模型六:YOLOv8-Pose 和 ST-GCN 实现实时跳绳计数器应用
本文介绍了一个基于YOLOv8-Pose和ST-GCN模型的实时跳绳计数器开发方案。系统通过摄像头实时捕捉视频,利用YOLOv8-Pose检测人体17个关键点,ST-GCN模型进行动作识别,结合脚踝y坐标变化实现跳绳计数。PyQt6构建的用户界面支持视频显示、状态监控和计数功能。关键创新点包括:1)多模型协同工作流程;2)基于Savitzky-Golay滤波的脚踝轨迹平滑算法;3)双阈值(预测次数和置信度)的跳绳状态判定机制。系统配置参数可调,适用于不同应用场景,为运动分析和健康监测提供了实用解决方案。
2025-07-18 11:06:18
635
原创 st-Gcn训练跳绳识别模型四:模型训练
本文介绍了ST-GCN算法的环境配置与训练流程。首先通过git下载源码并安装依赖环境,接着修改graph.py文件以支持COCO数据集格式。文中提供了YAML配置文件示例,包含数据路径、模型参数等关键设置。最后将训练数据移动到指定目录并执行训练命令,作者指出当前数据集规模可能不足。整个流程涵盖了从环境搭建到模型训练的关键步骤,为基于骨骼动作识别的ST-GCN算法实现提供了完整指导。
2025-07-18 11:01:16
250
原创 st-Gcn训练跳绳识别模型四:数据合并和训练流程
该脚本将跳绳动作识别任务的骨架数据处理为ST-GCN训练所需格式。主要步骤包括:加载骨架数据(.npy)和标签,应用空间(旋转/缩放/噪声)和时间(裁剪/翻转)增强提升泛化能力;通过过采样解决类别不平衡问题;按8:2比例划分训练/测试集并打乱顺序。最终输出包含x/y坐标的(N,2,100,17,1)格式数据文件(.npy)和样本标签文件(.pkl)。特点包括:移除速度流简化数据维度,固定100帧长度,基于1920x1080分辨率归一化坐标,确保数据格式一致且类别平衡。
2025-07-18 10:35:22
180
原创 st-Gcn训练跳绳识别模型三:自动提取视频数据生成npy代码解析
该脚本利用YOLOv8-Pose模型提取视频中的运动骨架数据,用于跳绳动作识别。它能处理跳绳(标签1)和非跳绳(标签0)两类视频,通过逐帧检测17个COCO关键点并归一化坐标,生成(2,100,17,1)维度的.npy文件。脚本支持动态分辨率处理,每100帧保存为一个样本,不足部分采用镜像填充补齐。标签信息存储在JSON文件中,便于后续模型训练。主要特点包括:批量处理视频、自动填充短片段、严格数据格式验证,并支持增量更新标签文件。输出数据可直接用于ST-GCN等动作识别模型的训练。
2025-07-18 09:55:57
187
原创 st-Gcn训练跳绳识别模型二:yolov8-pose提取骨骼数据代码讲解(源码在文末)
该Python脚本用于视频处理,提取基于COCO格式的17个关键点2D坐标,生成骨架数据并保存为.npy文件,同时存储对应标签到JSON文件。主要功能包括:使用YOLOv8-Pose模型检测视频帧中的关键点,选择离画面中心最近的人体;处理指定帧范围的视频片段,将关键点坐标存储为四维数组;批量处理多个视频文件,为ST-GCN等动作识别任务准备数据。脚本支持错误处理、进度显示,并生成包含样本名称和标签的汇总JSON文件,适用于多人场景下的单人动作识别数据预处理。
2025-07-18 09:51:12
283
3
原创 st-Gcn训练跳绳识别模型一:数据标注工具和标注流程
该工具集提供了一套完整的视频标注和骨骼关键点数据处理流程。主要包括:1)基于PySide6的视频标注工具labelV.py,可标记跳绳动作起止帧;2)jsonNpy.py将标注的JSON文件转换为npy格式,存储为[2,T,17,1]形状的骨骼关键点数据;3)autoLabel.py自动化处理工具,可批量处理跳绳/非跳绳视频并生成带标签的npy文件。系统支持yolov8-pose模型,生成的npy文件包含x/y坐标、帧数、17个关键点信息,同时维护全局标签JSON文件。该方案显著降低了人工标注工作量,为动作
2025-07-18 09:43:02
864
原创 Gcn符号笔记
摘要:本文介绍了无向图分析中的三个关键矩阵:邻接矩阵A[N,N]表示结点连接关系,度矩阵D[N,N]对角元素反映结点度数,结点特征矩阵X[N,C]包含结点属性特征(如年龄、性别或文本特征)。通过3结点示例和Cora数据集案例,说明了矩阵构建方法及其在图机器学习中的应用。邻接矩阵和度矩阵描述图结构,特征矩阵则支持结点分类等任务,三者共同构成图分析的基础工具。
2025-07-15 10:26:36
918
原创 [特殊字符] Excel秒出“数量大于500”报表!Python一键筛选+自动美化, 即刻高效呈现
摘要:本文介绍了一个Python脚本解决方案,通过pandas筛选Excel中数量超过500的物料记录,并自动创建新工作表。使用openpyxl对新表进行专业格式化处理,包括设置列宽、统一字体、添加边框和调整对齐方式,实现一键生成标准化报告。脚本支持追加写入不覆盖原数据,并提供了扩展建议,如添加条件格式、多阈值筛选等功能。该方法显著提升了数据处理效率,避免了繁琐的手动排版工作。(149字)
2025-07-11 10:52:35
435
原创 [特殊字符] 扫描式处理:Python 自动提取 PDF 中关键词相关表格并导出为 Excel
本文介绍用pdfplumber批量处理PDF文档的方法,主要针对财务报告等结构化文档,实现关键词定位和表格提取功能。通过Python脚本自动查找指定关键词(如"主要会计数据")所在页码及下一页,提取表格内容并保存为Excel文件。技术说明包括pdfplumber的表格提取策略、适用文档类型,以及优化建议如递归处理子目录、精准定位表格区域等。该方案为金融报表处理提供自动化流程,支持扩展集成图表识别、数据库导出等功能。
2025-07-11 10:45:41
1599
原创 ✍️ Python 批量设置 Word 文档多级字体样式(标题/正文/名称/小节)
本文介绍了一个利用python-docx库批量规范Word文档格式的自动化方案。通过定义专属字体样式函数,可自动设置标题、正文、一级/二级标题等不同层级的字体格式(如方正小标宋、楷体、仿宋、黑体等)。程序支持批量处理指定文件夹中的所有.docx文件,自动识别段落层级并应用相应样式,将处理结果保存至目标文件夹。文章详细说明了字体样式函数定义、批量处理逻辑以及注意事项,并提出了支持更多层级标题识别、添加页眉页脚等扩展建议,为办公文档的规范化排版提供了高效解决方案。
2025-07-09 14:49:00
1171
原创 [特殊字符] Python 批量生成词云:读取词频 Excel + 自定义背景 + Excel to.png 流程解析
本文介绍使用Python批量生成词云图的方法:1) 读取Excel词频文件获取词频数据;2) 结合wordcloud库和背景图生成形状化词云;3) 自动保存为PNG并可视化展示。关键点包括:使用generate_from_frequencies()避免分词误差、设置中文字体防乱码、背景图需纯白底色。方法适用于文本分析可视化,可扩展为批量处理、自定义颜色等应用场景。附代码示例和注意事项。
2025-07-09 14:42:19
670
原创 [特殊字符] Python 实战 | 批量统计中文文档词频并导出 Excel
摘要:本文介绍了一个Python脚本解决方案,用于批量处理中文文档的词频统计。通过jieba分词库实现中文分词,结合自定义停用词过滤和单字过滤功能,准确统计各文档高频词。使用pandas库将结果按词频降序输出为Excel文件,为文本分析、内容审查等场景提供实用工具。文章还提出了多项优化建议,包括关键词提取、词云生成等扩展功能,并提供了完整代码示例和资源链接。该方案具有处理效率高、结果可视化强、扩展性好的特点。
2025-07-07 13:58:53
1273
原创 [特殊字符] Excel 读取收件人 + Outlook 批量发送带附件邮件 —— Python 自动化实战
摘要:本文介绍如何用Python实现批量邮件自动发送功能。通过openpyxl读取Excel中的收件人信息,利用win32com.client调用Outlook自动生成并发送邮件,包含主题、正文和附件。关键步骤包括:构建部门-收件人映射字典、封装邮件发送函数、批量处理所有部门邮件。文章还提供了实用建议,如多附件处理、异常捕获等,并建议了HTML模板、定时发送等扩展功能。该方法可有效提升办公效率,减少人工操作误差。(149字)
2025-07-07 13:53:55
885
原创 [特殊字符] 从图片自动生成 Excel:Python 批量 OCR 表格识别实战
本文介绍了一个使用Python批量处理图片表格的自动化方案。通过调用百度OCR表格识别接口,程序能够自动识别指定目录下的所有图片表格,并生成同名Excel文件。文章详细讲解了三个关键步骤:1)使用os.walk遍历获取图片路径;2)调用百度异步API进行表格识别并下载结果;3)添加进度提示优化用户体验。方案适用于文档扫描、图片归档等场景,并提供了质量控制、错误处理等实用建议。文末还探讨了可能的扩展方向,如增加GUI界面、数据库集成等功能,并提供了完整代码示例的下载链接。
2025-07-03 14:31:10
1405
原创 [特殊字符] Excel 按月筛选 + 工作表复制 + 样式批量处理 —— Python 自动化大汇总
摘要:本教程介绍使用Python的openpyxl库实现Excel自动化处理,包括:1)遍历多工作表查找每月物料数据;2)筛选G列数量>1000的记录;3)从模板复制生成汇总表并写入数据;4)统一样式设置(字体、边框、对齐等)。适用于供应链管理、月度报表等场景,可实现高效的数据筛选、报表生成和样式美化。文中提供了详细代码示例,并建议扩展功能如条件参数化、目录页生成等。
2025-07-03 14:17:42
835
原创 [特殊字符] Python 自动查找替换 Excel 单元格内容 —— 高效批量处理
摘要:本文介绍使用Python的openpyxl库实现Excel数据批量替换的方法。通过查找-替换表建立映射字典,读取目标文件的D列数据,提取关键码后进行匹配替换,最终生成新文件。核心步骤包括:1)构建查找替换字典;2)读取目标文件关键列;3)提取冒号后关键码;4)执行字典替换并保留前缀;5)保存新文件并处理空值。该方法适用于编码、ID等一对一替换场景,可扩展多列替换和自定义分隔符。文末提供完整代码和案例素材下载链接。
2025-07-02 10:18:01
621
原创 [特殊字符] Excel 提取+图片批量插入 | Python 自动化生成稽查报告 Word 模板
本教程介绍使用Python自动化生成图文稽查报告的方法。通过openpyxl读取Excel数据,用os模块排序图片文件,再用python-docx将数据和图片填充到Word模板表格中。关键步骤包括:提取Excel数据、排序图片路径、扩展Word表格行数、填充数据并插入图片(可设置尺寸)、保存最终文档。该方案实现了Excel数据与图片的自动化匹配插入,可扩展添加格式美化、统计等功能,大幅提升报告制作效率。
2025-07-02 10:11:52
1577
原创 ✨ Python 高级定制 | 美化 Word 表格边框与样式(收货记录增强版)
本文介绍了如何使用Python-docx库为Word表格添加高级样式,包括单元格边框设置、背景色填充、居中对齐等功能。通过底层XML操作实现边框样式定制,使用RGB颜色代码填充单元格背景,并提供了完整的样式增强步骤:数据行加粗、边框隐藏、内容居中以及数值高亮等。这些方法可以有效提升表格的可读性和专业性,适用于发票、统计报表等场景。文章还提供了代码示例和扩展方向说明,帮助用户将原始数据转化为精美的专业文档。
2025-06-30 09:32:59
952
原创 [特殊字符] Python 实战 | 从 Excel 提取数据 → 生成美观 Word 收货记录表格(含合并单元格 + 总计功能)
本文介绍了一个使用Python实现Excel到Word数据处理的自动化流程,包含数据提取、表格写入和单元格合并等功能。通过openpyxl读取Excel中的收货数据,python-docx将数据写入Word模板并自动合并相同内容单元格。教程提供了完整的代码示例,包括数据汇总函数和单元格合并方法,适用于采购、仓储等场景的报表自动化需求。该方案可扩展字体样式设置、动态模板识别等功能,有效提升办公效率。
2025-06-30 09:22:03
651
原创 [特殊字符] Python 批量合并 Word 表格中重复单元格教程(收货记录案例实战)
摘要:文章介绍如何使用Python的python-docx库自动合并Word表格中重复单元格。通过定义Merge_cells函数检测连续重复项并进行合并,保留首行内容。完整流程包括读取Word文档、合并单元格、覆盖空白内容及保存新文档。该方法适用于各类重复数据的表格处理,能有效提升表格美观度和可读性,可扩展支持多列合并等功能。
2025-06-27 14:12:30
1189
原创 [特殊字符] Python 自动合并 Excel 中重复行 —— 提升表格可读性与美观度
本文介绍了如何使用Python的openpyxl库自动合并Excel中重复数据的单元格。主要内容包括:1. 提供了一个通用函数Merge_cells,可自动检测连续重复数据并合并对应单元格区域;2. 支持多列批量处理,保留表头不参与操作;3. 详细说明了函数实现原理,基于openpyxl.Worksheet.merge_cells()方法;4. 给出整体处理流程示例,包括读取Excel、处理数据、保存结果;5. 提示了合并操作的注意事项和扩展可能性。该方法可显著提高处理大量重复数据时的效率,增强表格可读性。
2025-06-27 09:52:51
836
原创 [特殊字符] 用 Python 一键提取 Excel 中的中文(正则表达式超实用)
通过本例,你掌握了:如何使用openpyxl读取和写入 Excel;使用正则表达式精准匹配中文字符;如何将提取结果批量写入 Excel;这种技巧在产品清单清洗、文本分类、数据抽取中都非常常用,非常适合办公自动化场景。
2025-06-25 11:44:47
693
原创 [特殊字符] Python 办公自动化实战技巧(三招教你轻松搞定重复工作)
【Python办公自动化实战技巧】3段代码解决Excel/PPT重复工作: 1️⃣ Excel多Sheet批量修改 功能:统一修改所有工作表的指定单元格 代码:openpyxl遍历sheet,修改A4单元格为"测试代码" 2️⃣ PPT自动生成荣誉证书 流程:读取Excel名单+PPT模板占位符识别 成果:批量生成每位同学专属证书页 3️⃣ PPT文本提取导出 实现:提取PPT文字内容并自动生成TXT和Word文档 应用:快速将课件转为文字讲义/会议纪要 这些代码具备"一键批量
2025-06-25 11:33:30
843
原创 OpenCV图像拼接技术详解:从特征匹配到全景合成
本文介绍了使用OpenCV实现图像自动拼接的技术流程,包括特征提取、匹配和图像融合等关键步骤。文章详细解析了ORB特征检测、暴力匹配、RANSAC算法计算单应性矩阵等技术实现,并提供了完整的代码实现。同时指出了图像顺序、重叠区域、特征点数量等注意事项,以及解决常见问题的方法。该技术可应用于全景摄影、医学影像等领域,通过调整算法参数能适应不同场景需求,并可通过改进融合策略进一步提升拼接效果。
2025-06-18 09:27:46
631
原创 从训练到部署:基于 Qwen2.5 和 LoRA 的轻量化中文问答系统全流程实战
《基于LoRA技术的轻量级中文问答系统构建方案》介绍了一套完整的轻量级大语言模型解决方案。采用阿里云Qwen2.5系列模型结合LoRA微调技术,实现了从多GPU分布式训练到Web部署的全流程。方案包含三大核心模块:分布式训练脚本、LoRA模型合并工具,以及基于Gradio的Web交互界面。通过LoRA技术显著降低训练成本,合并后的模型简化了部署流程,Gradio界面支持流式响应和多轮对话。该方案具有模块化设计、训练效率高、部署简单等特点,适合个人开发者和中小企业构建中文问答应用。完整代码已开源共享。
2025-06-04 11:04:48
755
煤炭领域煤矿媒质分析毕业设计代码与数据集分享:代码,成果展示以及对应数据集
2025-06-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅