引言
人工智能在近些年持续霸占高科技的代名词,但似乎仍有许多人们只限于知道人工智能的存在,以及可以为完成工作提高效率,再配上科幻小说赋予的邪恶形象,这似乎就是大部分人对人工智能的全部印象,但未意识到人工智能已经开始深刻且持久的改变人类社会,对AI的使用方式也停留在低效与没有任何技巧的使用上,这篇文章只是我为解决身边同学,尤其是并非计算机相关专业同学的一些通俗问题写就。
提示
本篇涉及的很多AI可能需要魔法才能使用,如果童鞋尚未学过魔法上网最好去github上学一学,从此会有一个全新的世界展开(指学习),现在进入正文吧(本人只是一名大二学生,学识尚浅,不免有说辞不到位的地方,只是为了通俗理解)。
大语言模型
知名的ChatGPT系列也好,百度的文心一言也好,都是各家公司研发的大语言模型(Large Language Model,LLM)。
语言模型指他的运行模式是以对话驱动的,比如一些聊天机器人,但加一个大,特指在训练这种语言模型时用到了大量的数据,我们在使用ChatGPT或类似的语言模型时,会发现ChatGPT似乎无所不知,正是因为训练它的参数涉及各行各业,由此堆积了巨大的训练数据的量,现今大语言模型的训练数据可以数以兆计。
自然语言处理
自然语言处理(Natural Language Processing),自然语言就是人类说的语言,人工智能要理解人类的语言需要NLP技术的处理,LLM的本质是一个猜词机器,在user发问后,AI首先通过NLP处理user的问题和要求,包括正确的断句和处理词性等让AI理解问题和要求然后从预先学习好的知识里提取语料,编辑成用户想要的概率最大的句子。我们只是要高效的使用AI这种工具,而非去真正研发一款AI,所以在user这一步我们能做到的,就是降低AI对我们说的话的误解。
提示词技巧
在我们向AI发问时,应该避免使用一些有歧义,过于复杂,暗含隐喻的句子或句式。这样会增加信息熵。好的发问应该是简单直接明了而且专业。尽量缩短单个句子的长度,但尽可能补充问题的细节,避免使用有歧义的词,就可以有更高的概率得到想要的答案。有时说辞不专业的话,AI也有惰性,通常会采取较为简单的解法。可以多用一些量词,
记忆,联想与错觉
AI在回答问题时为了保持逻辑连贯与维护语境会有类似人类记忆的功能,差不多上下午二十句左右,再长的对话可能会让AI失去先前的语境。联想这种行为发生在NLP的过程中,通过此行为可以弥补user发文时的谬误,扩充细节,使AI更好的处理。错觉是一种错误,例如AI坚持1+1=3的时候,是AI产生了错觉,给人一种人工智障的感觉。
产品推荐(逐步补充)
大语言模型
因为英文的语法更为严谨,且多数先进的AI产品都是美国研发,所以更推荐大家用英文去外国的官网使用这些AI。
英文语料
- OpenAI ChatGPT 4o(没有魔法国内可用chatos等提供接口网站访问)
- Anthropic Claude 3.5 Sonnet
中文语料
- 百度公司 文心一言(中文语料最好的AI)
- 阿里巴巴 统义千问 (综合能力很强)
- 字节跳动 豆包(据说接入了chatgpt,写数学题正确率挺高)
- 月之暗面 Kimi(适合长文本处理,目前最长的,二十万字)
图像生成
- OpenAI GPT 4o DALL·E3
数学建模
- 中国人民大学 MPai (免费数学建模工具)
- 八爪鱼(无代码爬虫软件)
文件格式转换
-
PDFSimpli(免费,操作简单)
代码生成
-
Microsoft Copilot
网页生成
- strikingly AI
视频处理
- FlexClip(从视频逐帧提取图片)
一键生成PPT
- AIPPT
工具库
- 魔音(声音克隆,根据url一键去水印等)