ActiveAndroid.initialize使用笔记

本文详细阐述了在数据库管理中,当增加表或者修改表结构时,如何同步更新数据库版本号的过程。通过实例展示了使用SQL命令(如ALTER TABLE)进行表结构调整,并相应地调整元数据来确保数据库版本的一致性和兼容性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果增加表需要修改

<meta-data
    android:name="AA_MODELS"
    android:value="
同时增加数据库版本号

<meta-data
    android:name="AA_DB_VERSION"
    android:value="5" />

如果修改表结构,

ALTER TABLE Items ADD COLUMN color INTEGER;
同事需要更改数据库版本号

<meta-data
            android:name="AA_DB_VERSION"
            android:value="5" />

### 关于 `deepspeed.initialize` 的使用说明 #### 初始化配置 为了简化分布式训练设置,`deepspeed.initialize` 提供了一种便捷的方式来初始化模型、优化器和其他必要的组件。该方法接受多个参数来定制化训练过程[^1]。 ```python import deepspeed model, optimizer, _, _ = deepspeed.initialize( model=model, model_parameters=model.parameters(), config=config_dict_or_path ) ``` 这段代码展示了最基本的调用方式,其中 `config` 可以是一个字典或者是指向 JSON 文件路径的字符串。通过这种方式可以轻松加载预定义好的配置文件来进行更复杂的设定。 #### 参数详解 - **model**: 需要被加速训练的目标 PyTorch 模型实例。 - **model_parameters**: 用于创建优化器的可迭代对象,默认情况下传入的是整个模型的所有参数;也可以指定部分参数参与训练。 - **config/config_file**: 训练所需的各项超参以及策略选项,支持直接传递 Python 字典 (`config`) 或者是指向本地磁盘上存储有这些信息的 JSON 文件名(`config_file`) 。此参数对于启用诸如 ZeRO 等高级特性至关重要[^2]。 #### 实际应用案例 当涉及到具体的应用场景时,比如单机多GPU环境下的高效并行计算,则可以通过如下方式进行调整: ```python from transformers import BertForSequenceClassification # 定义模型结构 model = BertForSequenceClassification.from_pretrained('bert-base-cased') # 设置DeeepSpeed配置项 ds_config = { "train_batch_size": 32, "fp16": {"enabled": True}, } # 调用initialize函数完成初始化工作 engine, optim, _, lr_scheduler = deepspeed.initialize( args=training_args, model=model, model_parameters=model.parameters(), config_params=ds_config ) for epoch in range(num_epochs): engine.train() for batch in dataloader: outputs = engine(batch['input_ids'], labels=batch['labels']) loss = outputs.loss engine.backward(loss) engine.step() # 进行梯度更新操作 ``` 上述例子中不仅包含了基本的初始化逻辑,还加入了混合精度训练的支持(即开启 FP16),这对于提高性能有着显著的帮助[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值