
GEE-PYTHON
文章平均质量分 75
GEE关于python包含了GEE官网的教程改编,此外还结合geemap进行了特定案例的分析,从2023年7月份开始进行不定期更新,欢迎大家订阅,如遇问题可以在博客评论区进行提问或者后台私信。如果有想快速使用python进行遥感云计算,欢迎大家进行订阅。
此星光明
博士,地图制图和地理信息工程专业,主要涉及Google Earth Engine、PIE-Engine、Planetary Computer、AI Earth、中科星图等云平台的遥感生态云计算研究(多源遥感和机器学习相结合),适用建筑、气象、农业、水利等各个专业云计算。2022年云计算领域博客之星TOP3,2023年CSDN博客之星TOP13,华为云云享专家、MVP,阿里云社区、51CTO博客专家博主。
展开
-
GEE python :使用 Google Earth Engine (GEE) 进行一个长期的全球数据建模项目定义区域、应用云掩膜、提取图像和气象数据,并生成子区域,我们可以更深入地分析特定区域的环
该区域的经纬度范围为115.4到117.4(经度)和39.3到41.4(纬度)。设置云覆盖的最大百分比。这段代码展示了如何使用Google Earth Engine进行遥感数据的处理与分析。通过定义区域、应用云掩膜、提取图像和气象数据,并生成子区域,我们可以更深入地分析特定区域的环境变化。这为后续的机器学习模型提供了丰富的数据基础。希望这篇博客能帮助你理解如何在GEE中处理遥感数据!原创 2025-04-30 09:30:00 · 8 阅读 · 0 评论 -
GEE Python:使用 Google Earth Engine (GEE) 和 Xarray 库进行归一化植被指数(NDVI)的分析
roi通过以上步骤,我们成功地使用 Google Earth Engine 和 Xarray 对 NDVI 数据进行了分析和可视化。这种方法不仅适用于 NDVI 数据,也可以扩展到其他遥感数据的处理和分析中。希望这篇博客能为你提供有用的信息和灵感!如果你有任何问题,请随时联系我。原创 2025-04-25 08:00:00 · 20 阅读 · 0 评论 -
GEE python:使用 Google Earth Engine 和 Xarray 对 NDVI 和 ET 数据进行了分析和可视化
通过以上步骤,我们成功地使用 Google Earth Engine 和 Xarray 对 NDVI 和 ET 数据进行了分析和可视化。这种方法可以帮助我们理解植被状况与水分蒸散之间的关系,为生态研究和水资源管理提供重要的数据支持。希望这篇博客能为你提供有用的信息和灵感!如果你有任何问题,请随时联系我。原创 2025-04-12 08:00:00 · 37 阅读 · 0 评论 -
GEE Python:使用 Google Earth Engine 和 Xarray 库进行水分监测的体积(VOD)数据分析(逐年和逐月的可视化结果)
point通过以上步骤,我们成功地使用 Google Earth Engine 和 Xarray 对 VOD 数据进行了分析和可视化。这种方法不仅适用于 VOD 数据,也可以扩展到其他遥感数据的处理和分析中。希望这篇博客能为你提供有用的信息和灵感!如果你有任何问题,请随时联系我。原创 2025-04-02 16:24:35 · 49 阅读 · 0 评论 -
GEE本地部署——conda+jupyter+geemap+geedim安装(将影像直接下载到本地)
你需要安装 Anaconda,这是一个开源的 Python 数据科学平台,包含众多科学计算和数据分析库,能够方便地管理环境和库。请访问 [Anaconda官网](https://www.anaconda.com/products/distribution),下载适合你操作系统的版本(Windows、macOS 或 Linux)。原创 2025-03-12 01:00:00 · 489 阅读 · 0 评论 -
GEE教程——利用MODIS(NDVI和EVI)制作影像并生成 GIF 动画,展示特定区域的 NDVI 变化
目的:定义一个多边形几何对象,表示感兴趣的区域。坐标:四个点定义了一个矩形区域。目的:创建一个过滤器,通过 DOY 属性匹配影像,并将匹配的影像存储在名为的属性中。应用连接:将匹配的影像组合在一起,并将结果转换回影像集合。min: 0.0,目的:指定 NDVI 数据的可视化参数,定义不同 NDVI 范围的颜色。定义一个感兴趣的区域并设置地图视图。加载 MODIS 数据,计算 NDVI,并为影像添加年中的天数属性。通过 DOY 属性匹配影像,生成复合影像。原创 2025-02-11 01:00:00 · 96 阅读 · 0 评论 -
GEE python——Google Earth Engine 获取气候数据,处理并分析降水量和温度数据,然后计算它们之间的相关性,并通过可视化展示结果
loc: 定义一个地理区域的边界框,包含四个坐标(南纬、东经、北纬、西经)。这段代码的整体流程是从 Google Earth Engine 获取气候数据,处理并分析降水量和温度数据,然后计算它们之间的相关性,并通过可视化展示结果。它展示了如何使用xee和 Xarray 库高效地处理和分析地理空间数据。原创 2025-02-06 03:00:00 · 219 阅读 · 0 评论 -
GEE Python:通过 Google Earth Engine 提取特定区域的 PM2.5 数据,进行每日和每月的聚合,绘制变化图和空间分布图,以便分析和可视化空气质量的变化
time_start和time_end: 定义时间范围,从 2008 年到 2009 年。time_dif: 计算时间差(以天为单位)。time_list: 创建一个包含所有日期的列表,从time_start开始,按天增加。: 定义一个函数,接受日期作为输入,过滤图像集合以获取该日期的图像,并计算平均值。返回的图像带有时间戳。loc: 定义一个区域的经纬度边界框,用于后续的数据提取。原创 2025-02-09 02:30:00 · 119 阅读 · 0 评论 -
GEE Python:使用 Google Earth Engine (GEE) 和 Xarray 库来处理 MODIS 卫星影像数据,并计算归一化水体指数 (NDWI),最终可视化结果
Xarray是一个面向数据科学的Python库,用于处理和分析多维数组的数据结构。它在NumPy的基础上构建,并提供了更多的功能和灵活性。Xarray的设计目标是为多维标签数据提供一致而高效的处理方式。Xarray的核心数据结构是DataArray和DataSet。DataArray是一种带有维度和坐标的多维数组,类似于NumPy的ndarray。它还可以包含额外的元数据和标签信息。DataSet是一组具有相同维度的DataArray对象,类似于Pandas的DataFrame。原创 2025-02-09 01:30:00 · 78 阅读 · 0 评论 -
GEE Python——Google Cloud 的工作负载指标的监测任务和打印(所用的时间等)
return (目的:定义一个类来存储和计算工作负载统计信息。属性:工作负载的标识符。:用于跟踪时间的指标。方法:返回总的 EECU 时间。getCost():根据 EECU 时间计算成本。这段脚本有效地监控并聚合来自 Google Cloud 的工作负载指标,提供资源使用和相关成本的洞察。它利用 Google Cloud 监控 API 和 Earth Engine,并以用户友好的表格格式呈现数据。原创 2025-01-30 02:00:00 · 32 阅读 · 0 评论 -
GEE python——gee_pyccd基于连续监测变化检测(Continuous Change Detection and Classification, CCDC)
协调在 Google Earth Engine 数据上使用 PyCCD 的脚本。此存储库与 Google 或 USGS 没有正式关联。gee_pyccd是一个基于Google Earth Engine平台的Python库,用于对遥感时间序列数据进行变化检测和趋势分析。它实现了基于连续监测变化检测(Continuous Change Detection and Classification, CCD)算法的功能,该算法可以通过比较时间序列数据的斜率来检测变化。原创 2025-02-03 01:00:00 · 492 阅读 · 0 评论 -
GEE python——基于MODIS数据获取中国各个地区的净初级生产力(Net Primary Productivity,NPP)数据,并将数据保存到Excel文件中
基于MODIS数据获取中国各个地区的净初级生产力(Net Primary Productivity,NPP)数据,并将数据保存到Excel文件中。原创 2024-12-30 02:00:00 · 177 阅读 · 0 评论 -
GEE python——利用geemap和pymannkendall进行MK(Mann-Kendall)趋势性分析和Pettitt检验(时间序列中的变化点)
cor: 定义一个坐标点(经度和纬度)。roi: 创建一个GEE几何点对象,表示感兴趣的区域。原创 2024-12-24 02:00:00 · 162 阅读 · 0 评论 -
GEE 高阶:一个用于从谷歌地球引擎下载大规模卫星数据的Python库/命令行工具
GEE 高阶:一个用于从谷歌地球引擎下载大规模卫星数据的Python库/命令行工具`geefetch` 是一个用于获取和处理地理空间数据的 Python 包,特别是遥感数据。以下是对该包的具体介绍:### 功能- **数据获取**:支持从多个遥感数据源(如 Sentinel-1、Sentinel-2、Landsat-8 等)下载数据。- **数据处理**:提供工具来处理和分析遥感影像,包括图像的裁剪、重采样和预处理。- **数据可视化**:集成可视化工具,方便用户查看和分析获取的数据。原创 2024-12-02 17:00:00 · 184 阅读 · 0 评论 -
GEE python——PyNotes GEE一个全面的工具包,描述了提取、处理和分析地球观测数据的技术
PyNotes GEE包是一个用于在Python中与Google Earth Engine(GEE)平台交互的软件包。GEE是一个云计算平台,用于处理和分析地理空间数据。它提供了大规模的地球观测数据集和分析工具,可以用于许多应用领域,包括环境监测、农业、水资源管理等。PyNotes GEE包提供了一组用于访问和处理GEE数据的函数和类。它允许用户在Python环境中编写代码,从GEE平台获取数据、执行分析和生成可视化结果。该软件包提供了许多功能,包括图像和特征集的读取、处理和显示,地图交互和空间分析等。原创 2024-11-30 19:15:00 · 102 阅读 · 0 评论 -
GEE python ——访问谷歌多 PB 的合成孔径雷达图像数据,不受尺寸限制(geesarfetcher安装包)
从您的 python 代码中访问谷歌多 PB 的合成孔径雷达图像数据,不受尺寸限制。只需提供坐标和时间间隔,就能获得一叠经过 Sentinel-1 预处理的 PolSAR 图像。这样就能对 GRD 图像进行快速数据分析,从而更好地了解合成孔径雷达数据的时间维度,而无需进行核心配准或校准等必要但可能耗时的步骤。原创 2024-11-15 19:30:00 · 235 阅读 · 0 评论 -
Google Earth Engine Python——PyGEE-SWToolbox地表水分析工具箱
一个用于使用Google Earth Engine进行交互式地表水映射和分析的Python Jupyter笔记本工具箱PyGEE-SWToolbox是一个Python-Google Earth Engine (GEE)地表水分析工具箱,开发于Jupyter笔记本中,用于使用GEE云计算平台进行交互式地表水映射。传统使用GEE平台需要用户能够在GEE在线代码编辑器中编写JavaScript代码,或使用Python API编写Python代码以执行数据集的地理空间处理。原创 2024-11-06 16:09:02 · 226 阅读 · 0 评论 -
GEE python——airPy 工具的开发旨在从 Google Earth Engine 提取高分辨率卫星数据,并生成统计指标,输出为适用于空气污染研究的机器学习准备特征
airPy 工具的开发旨在从 Google Earth Engine 提取高分辨率卫星数据,并生成统计指标,输出为适用于空气污染研究的机器学习准备特征。原创 2024-11-10 15:30:00 · 58 阅读 · 0 评论 -
GEE python:geetiles按照格网划分指定区域转化为array( GeoTIFF 数组)
其中 crops.py 包含一个 Python 类 DatasetDefinition,遵循 defs 下预定义的结构。文件 crops.py 将保存在目标文件夹中以供参考。目标文件夹与 tiles_file 一起创建。使用地理带将几何体分为训练、测试和验证。原创 2024-11-10 10:00:00 · 96 阅读 · 0 评论 -
GEE python: RUSLE土壤侵蚀模型的代码
该模型完全由 Python 代码编写,需要借助 Python API for GEE 对其进行转换,以便在 GEE 上运行。模型由 3 个脚本组成: Input_File.py:从 GEE 中获取输入数据并导出为 tif 文件,然后读取这些文件并将输出转换为数组。完成所需的处理(重投影、选择测试区域等)。原创 2024-10-18 00:45:00 · 441 阅读 · 0 评论 -
GEE Python:基于Sentinel-2数据构建GNDVI指数运用萨维茨基-戈莱滤波器方法构建时序滤波
谷歌地球引擎时间序列与萨维茨基-戈莱滤波器 示例展示了如何提取地物集合的图像集合值、创建植被指数时间序列数据帧并对其应用萨维茨基-戈莱滤波器。原创 2024-10-20 16:30:00 · 124 阅读 · 0 评论 -
GEE python :IpyGEE是一个用于地理空间数据分析和可视化的Python包
一套用于在 Jupyter 笔记本和 Jupyter Lab 中使用 Google Earth Engine 的工具和小部件IpyGEE是一个用于地理空间数据分析和可视化的Python包。它是基于Google Earth Engine (GEE)平台开发的,通过集成GEE的功能,提供了一系列方便地处理和分析遥感影像数据的工具。IpyGEE的主要特点和功能包括:1. 数据获取:IpyGEE提供了简单的接口用于从GEE平台获取遥感影像数据。用户可以根据自己的需求选择不同的数据源、时间范围和空间范围。原创 2024-10-21 10:00:00 · 208 阅读 · 0 评论 -
GEE python:geeet包
geeet 是一个 Python 包,提供了一套通用的构建模块,用于从遥感观测中估算蒸散发 (ET)。它还具有完整的 ET 模型,如 PT-JPL 和 TSEB。geeet 中的所有模块都设计为可以处理两种格式的输入数据:(1) 作为 numpy ndarrays 和 (2) 作为 Google Earth Engine (GEE) 图像。GEE 是一个基于云的平台,专注于地球观测研究,提供了一个多 PB 的地理空间数据目录。原创 2024-10-15 15:00:00 · 299 阅读 · 0 评论 -
GEE Python:Sentinal-2 SR卫星影像下载指定坐标的 RGB 图像
Sentinel-2是欧洲空间局(ESA)的一组地球观测卫星,旨在提供高分辨率、多光谱的地球表面观测数据。该卫星具有全球覆盖能力,能够捕捉到从乡村到城市、从河流到山脉的各种环境和地物特征。每个Sentinel-2卫星配备了一台名为多光谱成像设备(MSI)的仪器,能够以10到60米的距离分辨率获取不同波段的影像。这些波段包括可见光、近红外和短波红外,能够显示植被、土壤、岩石、水体和人类建筑等不同地物的特征。Sentinel-2卫星每5天在同一位置获取一次影像,因此能够提供高频率的监测能力。原创 2024-10-14 11:00:00 · 297 阅读 · 0 评论 -
GEE Python:对GRWLL中河流中心线的像素类型进行采样,并输出每个陆地卫星图像的冰覆盖和总中心线像素区域
河流中心线提取的主要流程可以分为以下几个步骤:1. 数据准备:收集需要提取中心线的河流数据,包括高程数据、河流形状数据等。2. 预处理:对河流数据进行预处理,包括去除噪声、填充空白区域、平滑处理等,以提高后续中心线提取的准确性。3. 河道提取:利用一定的算法或方法,从预处理后的河流数据中提取出河道的大致位置。常见的算法包括基于高程数据的河道提取、基于河道形状的河道提取等。4. 中心线提取:从提取出的河道数据中提取中心线。原创 2024-09-29 15:30:00 · 111 阅读 · 0 评论 -
GEE Python:利用VITO的NDVI数据进行年际、季节性和重采样的周期性变化分析
VITO/PROBAV/C1/S1_TOC_100M数据是由比利时的VITO(Flemish Institute for Technological Research)机构开发并提供的一种卫星遥感数据。该数据集包含了针对地表进行监测的高分辨率多光谱影像。具体来说,VITO/PROBAV/C1/S1_TOC_100M数据是利用PROBA-V卫星获取的,其传感器具有100米的空间分辨率。该数据集覆盖全球范围,并以每天一次的频率获取数据,因此可以提供快速的地表监测更新。原创 2024-09-10 15:00:00 · 161 阅读 · 0 评论 -
GEE Python:采用比利时的VITO(100m)分辨率数据的NDVI 时序计算
VITO/PROBAV/C1/S1_TOC_100M数据是由比利时的VITO(Flemish Institute for Technological Research)机构开发并提供的一种卫星遥感数据。该数据集包含了针对地表进行监测的高分辨率多光谱影像。具体来说,VITO/PROBAV/C1/S1_TOC_100M数据是利用PROBA-V卫星获取的,其传感器具有100米的空间分辨率。该数据集覆盖全球范围,并以每天一次的频率获取数据,因此可以提供快速的地表监测更新。原创 2024-09-14 15:00:00 · 131 阅读 · 0 评论 -
NASA数据集:ASTER L2 地表辐射率 VNIR 和 SWIR V003
ASTER 地表辐照度可见近红外和短波红外(AST_09)是一个多文件产品(https://lpdaac.usgs.gov/documents/996/ASTER_Earthdata_Search_Order_Instructions.pdf),包含可见近红外(VNIR)和短波红外(SWIR)传感器的大气校正数据。每个产品都包括两个层次数据格式--地球观测系统(HDF-EOS)文件:一个是可见近红外文件,另一个是短波红外文件。它们之间的区别在于文件名中显示的制作时间相差一秒。更明显的区分特征是文件大小;原创 2024-09-10 00:30:00 · 494 阅读 · 0 评论 -
GEE Python案例——通过机器学习算法检测 Portonovo 和 Trave 悬崖之间的崖顶侵蚀驱动因素(意大利安科纳)
岩石海岸线的特点是陡峭的悬崖峭壁,经常会经历各种自然过程,这些过程往往表现出错综复杂的相互依存关系,如降雨、冰雪和水流以及海洋作用。通过遥感和地理信息技术获取的高时空分辨率数据的出现,为安全勘探原本无法进入的区域提供了便利。从这些技术中收集到的数据集通常与实地考察的数据相结合,随后可通过机器学习算法和/或数值建模进行分析,以确定/找出影响崖顶侵蚀的主要影响因素。本研究侧重于马尔凯地区亚得里亚海科内罗岬角的一个具体案例。研究方法包括几个步骤。原创 2024-09-08 17:30:00 · 167 阅读 · 0 评论 -
GEE案例——利用Sentinel-1影像数据自动检测和跟踪中型冰山监测(阿蒙森海冰山)
读取图像和处理图像(分割、分类)的功能# 从 Google 地球引擎加载 S1 图像的函数# 输入# - startdate(str):图像的开始日期# - roi (ee geometry):图像的搜索区域kernel = ee.Kernel.gaussian(3) #高斯核函数# 检查 EE 图像的尺寸 -> 选择大尺寸图像dim = 0dim = testind = iseg = 0if value!原创 2024-07-21 18:30:00 · 425 阅读 · 0 评论 -
GEE深度学习——使用Tensorflow进行神经网络DNN土地分类
这是地球引擎和 TensorFlow 演示笔记本。具体来说,本笔记本展示了以 TFRecord 格式从 Earth Engine 导出训练/测试数据。准备用于 TensorFlow 模型的数据。在 TensorFlow 中训练和验证一个简单的模型。对从地球引擎导出的 TFRecord 格式图像数据进行预测。将分类图像数据以 TFRecord 格式输入地球引擎。这旨在演示一个完整的输入/输出。有关使用顶点人工智能平台托管模型进行交互式预测的工作流程,请参阅本示例笔记本。原创 2024-05-26 15:00:00 · 903 阅读 · 0 评论 -
GEE深度学习——使用卷积神经网络(Convolutional Neural Network,CNN)进行土地分类(PyTorch模式)
""" 训练变量"""# 云存储桶中包含训练和测试数据集。# 训练参数""" 模型部署变量"""# 训练模型的输出桶。替换为可写的输出桶!# 模型部署的元数据现在,我们需要为模型指定一个处理程序。我们可以使用 Torchserve 的默认处理程序,也可以编写自定义处理程序。在这里,我们的模型会返回每个类别的概率,因此我们将编写一个自定义处理程序,在概率上调用 argmax,并将概率最高的类别值返回给地球引擎。原创 2024-05-25 10:30:00 · 1212 阅读 · 0 评论 -
GEE深度学习——地代码作物分类(Vertex AI 机器学习MLPINGTAI )
AutoML 能以最小的技术投入创建和训练模型。本示例演示了使用 Vertex AI Python SDK 训练和部署一个 AutoML 表格式模型,然后从 Earth Engine 连接到该模型,对国家农业图像计划 (NAIP) 航空图像中的作物类型进行分类。本教程的主要流程是为了将选好的训练数据,进行GCS的问格式转换,然后进行数据集的创建,作为新格式的训练数据集,使用create()函数进行创建,这里可以进行数据名称和数据源的确定。原创 2024-05-25 15:30:00 · 607 阅读 · 0 评论 -
GEE python——利用colab和geemap实现指定区域的研究区概况图的制作
制作指定区域研究区概况图的技术流程:1. 确定研究区域:首先,确定您感兴趣的研究区域。这可以是一个特定的地理区域,如一个国家、一个城市或一个自然保护区。2. 收集数据:收集您需要的数据来描述研究区域的概况。这些数据可能包括地形数据(如DEM)、卫星图像、气候数据、土地覆盖数据等。您可以从公开的数据集、卫星图像提供商或相关研究机构获取这些数据。3. 数据处理和分析:使用地理信息系统(GIS)或相关软件来处理和分析收集到的数据。这可能包括空间分析、图像处理、统计分析等。原创 2024-05-17 10:00:00 · 490 阅读 · 0 评论 -
GEE-python 更新提示(含网页上Colab / JupyterLab 和基于本地的操作 )
今天收到了来在GEE开发中心的邮件,作为 Google 对安全性改进的一部分,您将看到(Python)ee.Authenticate()和(命令行)earthengine 身份验证调用的行为方式发生了一些变化。他们将继续生成凭证文件,但审批步骤会有所不同。具体修改部分:这仅适用于使用 Python 库或命令行工具的情况;代码编辑器没有变化。请将您的 Python 客户端升级到版本 0.1.304(从 3 月 30 日起)或更高版本。运行身份验证命令时请注意不同的说明。细节:以前,身份验证命令会将您发送到 G原创 2024-05-08 17:30:00 · 192 阅读 · 0 评论 -
GEE python——如何利用segment-geospatial Python模型实现机场飞机的提取和识别
segment模型是一种用于图像分割的深度学习模型。图像分割是将图像划分为不同的区域或对象的过程,旨在识别和定位图像中的不同物体或区域。segment模型通常基于卷积神经网络(CNN)架构,并经过训练来学习从像素级别对图像进行分类的能力。它将输入图像作为输入,并输出一个与输入图像具有相同大小的分割结果图像。segment模型以像素为单位进行预测,将每个像素分类为图像中的某个类别。常见的应用包括语义分割(将图像中的每个像素标记为属于不同的语义类别,如道路、汽车、行人等),实例分割(将图像中的每个像素标记为不同原创 2024-04-08 17:30:00 · 753 阅读 · 0 评论 -
GEE案例(python)——利用谷歌地球引擎中的交互式桑基图可视化分类时间序列数据的变化(2000-2020年不同土地转化可视化)
使用地球引擎(Earth Engine)可视化土地植被、植物健康、焚烧严重程度或任何其他时间序列分类图像的变化,并配有交互式桑基图。使用内置数据集库方便快捷,也可灵活定义自己的自定义数据集。谷歌地球引擎(Google Earth Engine)是一个强大的云平台,用于存储、处理和分析地理空间数据。它提供了一系列工具和功能,能够帮助用户可视化分类时间序列数据的变化。其中之一是交互式桑基图(Interactive Sankey Diagram),它可以帮助我们更好地理解数据的流动和变化。原创 2024-02-24 18:00:00 · 497 阅读 · 0 评论 -
GEE Python——洪水概率预测的案例分析
利用随机森林模型以通过 GEE Python API 输出国家范围内的洪水概率。我使用 Sentinel-1 从已知洪水事件中派生的洪水标签来训练分类器,然后输出概率栅格影像获得训练结果。洪水事件频繁且普遍,对人类社会和环境造成了巨大的影响。因此,准确预测洪水事件对于减少风险、保护人类生命和财产至关重要。Sentinel-1卫星是欧洲空间局(ESA)的一颗雷达卫星,可以提供高质量的全球覆盖雷达图像,并且具有高时空分辨率。利用Sentinel-1影像进行洪水事件的预测是可能的,下面将介绍这个过程。原创 2024-02-25 15:30:00 · 638 阅读 · 0 评论 -
GEE python——根据 GPS 轨迹绘制海拔高度剖面图
我们将利用 Strava 应用程序记录的 GPS 轨迹绘制海拔高度曲线图。原创 2024-02-07 17:00:00 · 591 阅读 · 0 评论 -
GEE python——Sentinel-1哨兵数据的变化监测(第一部分)
数据集和 Python 模块本教程将使用一个数据集:哨兵-1 地面测距探测图像下面的单元格导入了一些我们将使用的 Python 模块,并启用了内联图形。原创 2024-02-04 09:30:00 · 571 阅读 · 0 评论