- 博客(19)
- 资源 (1)
- 收藏
- 关注
转载 VOC数据提取自己需要的类生成XML标签
转载自:http://blog.csdn.net/samylee/article/details/61919677 公开数据集VOC里面有20类,若小伙伴需要提取特定的类别供深度学习训练的话,可以参考博主的这篇博客,如有不正,欢迎指出。 注意: 此python程序经测试VOC2007有效,其他年份的数据只需对程序稍作修改即可import os import os.path i
2018-01-22 11:22:01 1317
转载 [转]TensorFlow 在使用过程中可能遇到的问题及解决办法
TensorFlow是什么文章转载自:http://www.tuicool.com/articles/jeUVzqY官方的定义–TensorFlow是一个使用数据流图来进行数值计算的开源软件库。简单来说,TensorFlow是Google开源的深度学习框架。TensorFlow初学者在使用过程中可能遇到的问题及解决办法1.出现的问题:tensorflow.python.framework.error
2017-09-27 11:17:48 3356
原创 TensorFlow学习笔记(二)把数字标签转化成onehot标签
在MNIST手写字数据集中,我们导入的数据和标签都是预先处理好的,但是在实际的训练中,数据和标签往往需要自己进行处理。以手写数字识别为例,我们需要将0-9共十个数字标签转化成onehot标签。例如:数字标签“6”转化为onehot标签就是[0,0,0,0,0,0,1,0,0,0].首先获取需要处理的标签的个数:batch_size = tf.size(labels)假设输入了6张手写字图片,那么对应
2017-09-09 12:04:38 26705 6
原创 TensorFlow学习笔记(一)MNIST手写字识别
TensorFlow 是一个非常强大的用来做大规模数值计算的库。其所擅长的任务之一就是实现以及训练深度神经网络。TensorFlow 可以拆分成 tensor 和 flow 两部分来理解,tensor 指的是张量,是维度的推广,表示更多维度的矩阵;flow 指的是流,一层层的计算可以看作是“张量”在计算模型上的流动,简单的说就是看作计算过程。TensorFlow 的工作方式是:
2017-09-05 09:11:52 1050
原创 Win10 下安装 TensorFlow 遇到的一些问题
偶然得到了一个英伟达的显卡,高兴的不得了,高兴之余第一反应就是赶紧配置好,试试效果。结果遇到了一些问题,这里分享出来,希望能帮助遇到同样问题的小伙伴们。我的系统是win10 64位,显卡是GTX 1050Ti,安装TensorFlow参考的博客是http://blog.csdn.net/u010099080/article/details/53418159,博主给了一些安装的建议和遇到错误的解决办法
2017-07-21 17:02:52 2801 3
转载 MatConvnet工具箱使用手册翻译理解一
MatConvNet是用于MATLAB的卷积神经网络(CNN)的实现。工具箱的设计注重简单性和灵活性。它将CNN的构建块暴露为易于使用的MATLAB函数,提供用于计算具有过滤器组的线性卷积,特征池化等的例程。以这种方式,MatConvNet允许新的CNN快速原型架构;同时,
2017-06-08 15:59:07 2521
原创 斯坦福机器学习笔记十二
在线学习机制在线学习机制可以模型化问题,可以通过算法在涌入连续的数据流中学习用户的偏好,来优化一些网站的决策。利用刚得到的 (x , y) 数据对来迭代更新 θ。这里使用的是(x,y)而不是(x(i){{\text{x}}^{\left( \text{i} \right)}},y(i){{\text{y}}^{\left( \text{i} \right)}})是因为网站是有连续的数据的,每个数据用
2017-05-13 22:22:21 483
原创 斯坦福机器学习笔记十一
大规模机器学习在处理大数据问题之前,应该先画出学习曲线,然后确保增加数据是有效的,再去增加数据。对于高方差的情况,增加数据是有效的;而对于高偏差的情况,增加数据就作用不大,多加一些特征或者在经网络里加一些隐藏的单元这样应该会比较有效1、随机梯度下降算法在训练集较大的情况下,批量梯度下降算法的每一次迭代都要计算训练集的误差的平方和,计算量大,速度会很慢。如果一定需要一个大规模的训练集,可以使用随机梯度
2017-05-13 22:14:01 452
原创 斯坦福机器学习笔记十
推荐系统这里以电影推荐的栗子来说明什么是推荐系统。nu{{\text{n}}_{\text{u}}} 代表用户的数量 nm{{\text{n}}_{\text{m}}} 代表电影的数量 r(i,j) 如果用户给电影评过分,则r(i,j)=1 y(ij){{\text{y}}^{\left( \text{ij} \right)}} 代表用户i给电影j的评分 mj{{\text{m}}_{\te
2017-05-08 08:49:09 421
原创 斯坦福机器学习笔记九
异常检测对于给定数据集 x1,x2,…,xm{{\text{x}}^{1}}\text{},{{\text{x}}^{2}}\text{},\ldots \text{},{{\text{x}}^{\text{m}}},假设数据集是正常的,我们希望知道新的数据 xtest{{\text{x}}_{\text{test}}} 是不是异常的,即这个测试数据不属于给定数据集所构成的那个数据组的几率。构建出的
2017-05-06 09:10:12 577
原创 斯坦福机器学习笔记八
降维降维可以把冗余的数据维度降低,使用较少的计算机内存,使学习算法加速;降维也能实现数据的可视化,将高维数据降到二维或者三维。1、主成分分析法(PCA)主成分分析法(PCA)是最常见的降维算法。PCA 所做的就是寻找一个低维的投影面,对数据进行投影,使得点到投影面的距离的平方能够最小化。其中,点到投影面的距离叫做投影误差。在应用PCA之前,通常要先进行均值归一化和特征规范化 ,使得特征 x1{{\t
2017-05-05 09:23:41 489
原创 斯坦福机器学习笔记七
K均值算法之前说到的算法都是监督学习算法,在监督学习中,训练集都是带标签的,我们的目标是找到能够区分正负样本的决策边界或者根据带标签的数据拟合出假设函数。现在开始介绍非监督学习算法,在非监督学习中,数据集没有标签,我们需要做的是将一系列无标签的数据集数据输入到一个算法中,让算法去找这些数据的内在结构。图上数据看起来可以分成两个分开的点集(称为簇),能够将上图自动的圈成点集的算法被称为聚类算法。 K
2017-05-04 09:00:15 545
原创 斯坦福机器学习笔记六
支持向量机与逻辑回归和神经网络相比,支持向量机(SVM)在学习复杂的非线性方程时会提供一种更为清晰、更为强大的方式。1、支持向量机的代价函数从逻辑回归的代价函数来推导支持向量机的代价函数,已知逻辑回归的代价函数如下: J( θ )=−1m∑mi=1[y(i)log(hθ(x(i)))+(1−y(i))log(1−hθ(x(i)))]\text{J}\left( \text{ }
2017-05-03 15:12:39 606
原创 斯坦福机器学习笔记五
机器学习诊断法有时候发现训练出来的模型误差很大,会有很多解决办法。例如:增加更多的训练样本,减少特征数目,增加特征数目,增加多项式特征,减小或增大正则化参数 λ 的值 。但是这些尝试往往会浪费很多时间,所有这里提出了一种机器学习诊断法。1、数据的分配将数据分为三部分,训练集(60%)、交叉验证集(20%)和测试集(20%)。利用训练集,选择最优的多项式个数及其参数;利用交叉验证集代入到
2017-04-30 09:14:21 897
原创 斯坦福机器学习笔记四
神经网络 当特征太多时,线性回归算法和逻辑回归算法的计算负荷会非常大,不能有效地处理这么多的特征,因此需要使用神经网络。神经网络是许多逻辑单元按照不同层级组织起来的网络,每一层的输出变量都是下一层的输入变量。
2017-04-29 21:44:00 659
原创 斯坦福机器学习笔记三
逻辑回归算法在分类问题中,需要预测的变量 y 的值是离散值,首先讨论的是二元分类问题。在二元分类问题中,输出变量 y 有两个值:0 和 1,标记为 0 的类叫做负类;标记为 1 的类叫做正类 。我们希望分类器的输出值在0到1之间,因此这里提出了逻辑回归算法,该算法的假设函数的输出变量范围始终在 0 到 1 之间。 逻辑回归算法的假设函数是: h_θ (x)=g(θ^T X)=1/(1+e^
2017-04-29 12:57:51 670 2
原创 斯坦福机器学习笔记二
批量梯度下降法 梯度下降法是一个用来求函数最小值的算法,梯度算法的思想是:随机选择一个参数的组合(θ_0,θ_1 〖,θ〗_2…)计算代价函数,然后寻找下一个能让代价函数值下降最多的参数组合,直到找到一个局部最优解。选择不同的初始参数,可能会找到不同的局部最小值。梯度下降算法是很常用的算法,它可以被用于很多算法的最优化求解问题上。这里介绍的是批量梯度下降算法,之所以叫批量,是因为在梯度下降的每一
2017-04-29 08:19:47 931
原创 斯坦福机器学习笔记一
用了三周的时间把斯坦福机器学习的视频过了一遍,根据自己记的随堂笔记同时参考海大黄博的个人笔记,想把机器学习的内容再好好梳理一下。刚刚接触这一块,有不足之处,欢迎批评指正!机器学习是什么?机器学习是一种通过利用数据,训练出模型,然后使用模型预测的一种方法。“训练”产生“模型”,“模型”指导“预测”。机器学习存在不同类型的学习算法,最主要的两种类型是:监督学习和非监督学习。 监督学习的基本思
2017-04-28 21:39:14 3711
原创 OpenCV中 imshow函数运行中断的解决方法
刚开始接触OpenCV,遇到了个小问题,想把解决方法分享给大家。在此之前已经用VS2010配置好了OpenCV并且测试通过,运行顺畅,突然有一天就不好用了,生成成功但是运行不出结果。 单步调试发现是 imshow函数运行中断。重新配置了3次,VS卸载了两回,耗了两天时间,试了百度里的各种办法,都失败了。最后发现是图片放错了位置...汗... 结合之前的百
2017-03-10 16:00:49 8281 3
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人