Tensorflow中的fft与rfft(一维数据为例)

tf.signal.fft

tf.signal.fft(
    input, name=None
)

根据最里面的维度计算一维离散傅里叶变换(DFT)

参数

Input : complex64和complex128 类型的张量(Tensor)
name : 操作的名字(可选)

返回

与Input相同类型的一个Tensor.

使用方法:
a = tf.ones([4])
a_complex = tf.complex(a,tf.zeros(a.shape))  #先构造一个复数
b = tf.signal.fft(a_complex)

输出
在这里插入图片描述

tf.signal.rfft

tf.signal.rfft(
    input_tensor, fft_length=None, name=None
)

根据最里面的维度计算一维实数离散傅里叶变换(DFT)

参数

Input : float32或float64类型的张量(Tensor)
fft_length: FFT的长度
name : 操作的名字(可选)

返回

Tcomplex类型的一个张量

使用方法:
pred2 = np.random.rand(10,1)*2000
pred2 = tf.convert_to_tensor(pred2) #先构造一个实数Tensor
pred2_fft = tf.signal.rfft(pred2)

输出
在这里插入图片描述

fft与rfft的区别

我们知道对一维序列做DFT,得到的幅频取钱是在N/2+1处镜像对称的。
假如输入序列的shape是(10,)
tf.signal.fft得到的也是(10,)
在这里插入图片描述

tf.signal.rfft得到的是(6,)
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值