tf.signal.fft
tf.signal.fft(
input, name=None
)
根据最里面的维度计算一维离散傅里叶变换(DFT)
参数
Input : complex64和complex128 类型的张量(Tensor)
name : 操作的名字(可选)
返回
与Input相同类型的一个Tensor.
使用方法:
a = tf.ones([4])
a_complex = tf.complex(a,tf.zeros(a.shape)) #先构造一个复数
b = tf.signal.fft(a_complex)
输出
tf.signal.rfft
tf.signal.rfft(
input_tensor, fft_length=None, name=None
)
根据最里面的维度计算一维实数离散傅里叶变换(DFT)
参数
Input : float32或float64类型的张量(Tensor)
fft_length: FFT的长度
name : 操作的名字(可选)
返回
Tcomplex类型的一个张量
使用方法:
pred2 = np.random.rand(10,1)*2000
pred2 = tf.convert_to_tensor(pred2) #先构造一个实数Tensor
pred2_fft = tf.signal.rfft(pred2)
输出
fft与rfft的区别
我们知道对一维序列做DFT,得到的幅频取钱是在N/2+1处镜像对称的。
假如输入序列的shape是(10,)
tf.signal.fft得到的也是(10,)
tf.signal.rfft得到的是(6,)