目录链接:
力扣编程题-解法汇总_分享+记录-CSDN博客
GitHub同步刷题项目:
https://github.com/September26/java-algorithms
原题链接:. - 力扣(LeetCode)
描述:
给定二叉树的根节点 root
,找出存在于 不同 节点 A
和 B
之间的最大值 V
,其中 V = |A.val - B.val|
,且 A
是 B
的祖先。
(如果 A 的任何子节点之一为 B,或者 A 的任何子节点是 B 的祖先,那么我们认为 A 是 B 的祖先)
示例 1:
输入:root = [8,3,10,1,6,null,14,null,null,4,7,13] 输出:7 解释: 我们有大量的节点与其祖先的差值,其中一些如下: |8 - 3| = 5 |3 - 7| = 4 |8 - 1| = 7 |10 - 13| = 3 在所有可能的差值中,最大值 7 由 |8 - 1| = 7 得出。
示例 2:
输入:root = [1,null,2,null,0,3] 输出:3
提示:
- 树中的节点数在
2
到5000
之间。 0 <= Node.val <= 105
解题思路:
最大差值,那么一定是和父节点中最大最小值进行比较。
所以构建一个递归方法,传入最大最小值,返回值为最大差值即可。
代码:
public:
int maxAncestorDiff(TreeNode *root)
{
return searchMaxDiff(root, root->val, root->val);
}
int searchMaxDiff(TreeNode *root, int maxValue, int minValue)
{
if (root == nullptr)
{
return 0;
}
int diffValue = max(abs(root->val - maxValue), abs(root->val - minValue));
maxValue = max(maxValue, root->val);
minValue = min(minValue, root->val);
diffValue = max(searchMaxDiff(root->left, maxValue, minValue), diffValue);
diffValue = max(searchMaxDiff(root->right, maxValue, minValue), diffValue);
return diffValue;
}
};