线性代数之逆矩阵

定义:

A为n阶方阵,存在同阶n阶方阵B, 有 AB=BA=E,则A^{-1} = B ,A的逆矩阵是B.

需要证明 A() = ()A = E,其中()中A是逆矩阵

注意事项:

1,未必所有方阵均可逆

2,若可逆,逆矩阵是唯一的.

\left | A \right |\neq 0 是非奇异,非退化,满秩,可逆

定理: 

A可逆的充要条件是\left | A \right |\neq 0A^{-1} = \frac{1}{\left | A \right |} A^*

方阵都有AA^* = A*A = \left | A \right |E,推论:A(\frac{1}{\left | A \right |} A^*) =(\frac{1}{\left | A \right |} A^*) A = E

其中:AB=E (BA=E)只证明一个就可以认为 A^{-1} = B,\left | A \right |\neq 0

例1 :

如果矩阵A = \left( \begin {aligned} 1 & \ & 1 & \ & \1 \\ 2 & \ & 1 & \ & \ { 3} \\ 1 & \ & 1 & \ & \ 4 \end{aligned} \right ),求A^{-1},

如果使用公式A^{-1} = \frac{1}{\left | A \right |} A^*,需要先求行列式A,然后再求A*,A*是按行求,按列放,需要求9次,计算量比较大.

例2, 若,A+B = AB, 求A-E 可逆'

思路:证明 构造这样方式 (A-E)() = E,()及时(A-E)的逆矩阵

A+B = AB,-->A+B - AB = 0, -->两边加E , A+B - AB +E = E -->(A-E) B -(A-E) = E -->(A-E)(B-E) =E 

矩阵方程

 

矩阵A = \left( \begin {aligned} 4 & \ & 2 & \ & \ {3} \\ 1 & \ & 1 & \ & \ { 0} \\ -1 & \ & 2 & \ & \ 3\end{aligned} \right ), 存在 Ax = A +2x ,求x

得 Ax -2x = A,-->(A-2)x = A

注意1 , A是矩阵不能矩阵减去一个数2, 变成(A-2E)x = A

两边除以 (A-2E)^{-1},需要注意

2, (A-2E)^{-1}是左乘,

3,并且(A-2E)要证明是可逆的才有 ,\left | A-2E \right |\neq 0

4,(A-2E)不能放分母上

得到 x  = (A-2E)^{-1}A, 

 性质

1 , A 可逆,A^{-1}可逆,有,(A^{-1})^{-1} = A , 跟转置 (A^{T})^{T} = A一样

2,A, B均可逆,AB可逆,有 (AB)^{-1} = B^{-1}A^{-1},跟转置 (AB)^{T} = B^{T}A^{T}

3,A 可逆,A^T可逆,有(A^T)^{-1} = (A^{-1})^T, 若k \neq 0, (kA)^{-1} = \frac{1}{k} A^{-1}

4,A 可逆,\left | A^{-1} \right | = \left | A \right |^{-1}

         AA^{-1} =E , \left | A \right | \left | A^{-1} \right |=1 ,\left | A^{-1 } \right | = \frac{1}{\left | A \right |} = \left | A\right |^{-1}

5, A可逆,A^*也可逆,有(A^*)^{-1} = \frac{1}{\left | A \right |} A,

        AA^* = A^*A = \left | A \right |E ,除以\left | A \right |---> (\frac{1}{\left | A \right |} A ) A^* = E --> (A^*)^{-1} = \frac{1}{\left | A \right |} A

A* 伴随矩阵有一下

        1,按行求,按列放

        2,  AA^* = A^*A = \left | A \right |E

        3,\left | A^* \right | = \left | A \right |^{n-1}

         4, A^{-1} = \frac{1}{\left | A \right |} A^*, --->  A^* = \left | A \right |A^{-1}

求(A*)* = \left | A^* \right |(A^*)^{-1} = \left | A \right |^{n-1} \frac{1}{\left | A \right |} A = \left | A \right |^{n-2} A

求 ((A*)*)* =\left | A \right |^{n-2} A A* = (\left | A^{n-1} \right |)^{n-2} \left | A \right |A^{-1} = \left | A \right |^{(n-1)(n-2) +1}A^{-1} = \left | A^{n^2 -3n+3} \right |A^{-1}​​​​​​​

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值