定义:
A为n阶方阵,存在同阶n阶方阵B, 有 AB=BA=E,则 ,A的逆矩阵是B.
需要证明 ,其中()中A是逆矩阵
注意事项:
1,未必所有方阵均可逆
2,若可逆,逆矩阵是唯一的.
是非奇异,非退化,满秩,可逆
定理:
A可逆的充要条件是,
方阵都有,推论:
其中:AB=E (BA=E)只证明一个就可以认为 = B,
例1 :
如果矩阵A = ,求
,
如果使用公式,需要先求行列式A,然后再求A*,A*是按行求,按列放,需要求9次,计算量比较大.
例2, 若,A+B = AB, 求A-E 可逆'
思路:证明 构造这样方式 (A-E)() = E,()及时(A-E)的逆矩阵
A+B = AB,-->A+B - AB = 0, -->两边加E , A+B - AB +E = E -->(A-E) B -(A-E) = E -->(A-E)(B-E) =E
矩阵方程
矩阵A = , 存在 Ax = A +2x ,求x
得 Ax -2x = A,-->(A-2)x = A
注意1 , A是矩阵不能矩阵减去一个数2, 变成(A-2E)x = A
两边除以 ,需要注意
2, 是左乘,
3,并且(A-2E)要证明是可逆的才有 ,
4,(A-2E)不能放分母上
得到 x = A,
性质
1 , A 可逆,可逆,有,
, 跟转置
一样
2,A, B均可逆,AB可逆,有 ,跟转置
3,A 可逆,可逆,有
, 若
4,A 可逆,,
5, A可逆,也可逆,有
,
A =
A =
E ,除以
--->
-->
A* 伴随矩阵有一下
1,按行求,按列放
2, A =
A =
E
3,
4, , --->
求(A*)* = =
=
求 ((A*)*)* = A* =
=
=