深度学习
文章平均质量分 90
aa_JamesJones
这个作者很懒,什么都没留下…
展开
-
吴恩达《神经网络与深度学习》课程笔记归纳(一)-- 深度学习概述
本文旨在对吴恩达《神经网络与深度学习》课程第一课中所阐述的主要观点进行归纳和分析。若后续遇到无法理解的地方,可以通过查阅如下博客:http://blog.csdn.net/red_stone1/article/details/77799014 ,或者观看视频:http://study.163.com/my#/smarts。I. 什么是神经网络深度学习(Deep Learning)指的是训练...转载 2018-07-17 19:37:43 · 528 阅读 · 0 评论 -
Tensorflow 搭建自己的神经网络(一)
视频教程:https://www.bilibili.com/video/av16001891网站教程:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/神经网络的输入只能是数值型:BP神经网络反向的误差传播过程中有求导运算的,必须是连续可导的函数才能进行此运算,所以输入也必须是数值型的数据(向量或者矩阵)。...原创 2018-11-12 21:17:49 · 1840 阅读 · 0 评论 -
Tensorflow 搭建自己的神经网络(二)
卷积神经网络:import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist=input_data.read_data_sets('MNIST_data',one_hot=True)# 定义Weight变量.其中我们使用tf.truncted_normal产生随机变量来进行初...原创 2018-11-14 12:02:58 · 467 阅读 · 0 评论 -
吴恩达《卷积神经网络》课程笔记归纳(四)-- 特殊应用:人脸识别与神经风格迁移
1. 什么是人脸识别首先简单介绍一下人脸验证(face verification)和人脸识别(face recognition)的区别。人脸验证:输入一张人脸图片,验证输出与模板是否为同一人,即一对一问题。 人脸识别:输入一张人脸图片,验证输出是否为K个模板中的某一个,即一对多问题。一般地,人脸识别比人脸验证更难一些。因为假设人脸验证系统的错误率是1%,那么在人脸识别中,输出分别与K...转载 2018-11-06 19:58:20 · 346 阅读 · 0 评论 -
吴恩达《卷积神经网络》课程笔记归纳(三)-- 目标检测
1. 目标定位前两节课程中,我们介绍的是利用CNN模型进行图像分类。除此之外,本周课程将继续深入介绍目标定位和目标检测(包含多目标检测)。标准的CNN分类模型我们已经很熟悉了,如下所示:原始图片经过CONV卷积层后,Softmax层输出4 x 1向量,分别是:注意,class label也可能是概率。上述四个向量分别对应pedestrain,car,motorcycle...转载 2018-11-06 19:24:03 · 430 阅读 · 0 评论 -
吴恩达《卷积神经网络》课程笔记归纳(二)-- 深度卷积模型:案例研究
1. 为什么要进行实例探究本周课程将主要介绍几个典型的CNN案例。通过对具体CNN模型及案例的研究,来帮助我们理解知识并训练实际的模型。典型的CNN模型包括:LeNet-5AlexNetVGG除了这些性能良好的CNN模型之外,我们还会介绍Residual Network(ResNet)。其特点是可以构建很深很深的神经网络(目前最深的好像有152层)。另外,还会介绍In...转载 2018-11-06 19:00:45 · 285 阅读 · 0 评论 -
吴恩达《卷积神经网络》课程笔记归纳(一)-- 卷积神经网络基础
1. 计算机视觉计算机视觉(Computer Vision)是深度学习应用的主要方向之一。一般的CV问题包括以下三类:Image Classification Object detection Neural Style Transfer下图展示了一个神经风格转换(Neural Style Transfer)的例子:使用传统神经网络处理机器视觉的一个主要问题是输入层维度很大。例如一...转载 2018-11-06 14:41:46 · 416 阅读 · 0 评论 -
Python深度学习
一.深度学习简介机器学习和深度学习的核心问题在于有意义地变换数据,换句话说,在于学习输入数据的有用表示(representation)——这种表示可以让数据更接近预期输出。深度学习是机器学习的一个分支领域:它是从数据中学习表示的一种新方法,强调从连续的层(layer)中进行学习,这些层对应于越来越有意义的表示。可以将深度网络看作多级信息蒸馏操作:信息穿过连续的过滤器,其纯度越来越高(即对任务的...原创 2018-10-24 19:25:26 · 2205 阅读 · 0 评论 -
神经网络中的激活函数
所谓激活函数(Activation Function),就是在人工神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端,也叫激励函数。作用:因为线性模型的表达能力不够,引入激活函数是为了添加非线性因素。在神经网络中,每一层输出的都是上一层输入的线性函数,所以无论网络结构怎么搭,输出都是输入的线性组合。在我们面对线性可分的数据集的时候,简单的用线性分类器即可解决分类问题。但是现实...原创 2018-10-06 20:44:06 · 1060 阅读 · 0 评论 -
L0、L1、L2范数及正则化
范数对于一个向量来说是一个向量的长度(模),对于一个矩阵来说是矩阵中所有向量的长度的求和。在深度学习中,监督类学习问题其实就是在规则化参数同时最小化误差。最小化误差目的是让模型拟合训练数据,而规则化参数的目的是防止模型过分拟合训练数据。参数太多,会导致模型复杂度上升,容易过拟合,也就是训练误差小,测试误差大。因此,我们需要保证模型足够简单,并在此基础上训练误差小,这样训练得到的参数才能保证...原创 2018-10-02 21:55:29 · 901 阅读 · 0 评论 -
吴恩达《神经网络与深度学习》课程笔记归纳(三)-- 神经网络基础之Python与向量化
原博地址:https://blog.csdn.net/red_stone1/article/details/77929889上节课我们主要介绍了逻辑回归,以输出概率的形式来处理二分类问题。我们介绍了逻辑回归的Cost function表达式,并使用梯度下降算法来计算最小化Cost function时对应的参数w和b。通过计算图的方式来讲述了神经网络的正向传播和反向传播两个过程。本节课我们将来探...转载 2018-09-11 12:14:22 · 422 阅读 · 0 评论 -
吴恩达《神经网络与深度学习》课程笔记归纳(二)-- 神经网络基础之逻辑回归
参考的原博地址:https://blog.csdn.net/red_stone1/article/details/77851177上节课我们主要对深度学习(Deep Learning)的概念做了简要的概述。我们先从房价预测的例子出发,建立了标准的神经网络(Neural Network)模型结构。然后从监督式学习入手,介绍了Standard NN,CNN和RNN三种不同的神经网络模型。接着介绍了...转载 2018-09-11 12:15:41 · 478 阅读 · 0 评论 -
计算机视觉基础题目
1. 颜色的三要素(three elements of color):亮度(明度)、色调(色相)、饱和度(纯度)为颜色的三属性,又称颜色的三要素。2. 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征HOG特征对光照不敏感;HOG是在图像的局部方格单元上操作,所以它对图像几何的和光学的形变都能保持很好的不变性;HOG表示的是边缘(梯度)的...原创 2019-01-09 20:56:34 · 6783 阅读 · 0 评论